Cargando…

Effect of Neurofeedback Facilitation on Poststroke Gait and Balance Recovery: A Randomized Controlled Trial

OBJECTIVE: To test the hypothesis that supplementary motor area (SMA) facilitation with functional near-infrared spectroscopy–mediated neurofeedback (fNIRS-NFB) augments poststroke gait and balance recovery, we conducted a 2-center, double-blind, randomized controlled trial involving 54 Japanese pat...

Descripción completa

Detalles Bibliográficos
Autores principales: Mihara, Masahito, Fujimoto, Hiroaki, Hattori, Noriaki, Otomune, Hironori, Kajiyama, Yuta, Konaka, Kuni, Watanabe, Yoshiyuki, Hiramatsu, Yuichi, Sunada, Yoshihide, Miyai, Ichiro, Mochizuki, Hideki
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Lippincott Williams & Wilkins 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8205450/
https://www.ncbi.nlm.nih.gov/pubmed/33879597
http://dx.doi.org/10.1212/WNL.0000000000011989
Descripción
Sumario:OBJECTIVE: To test the hypothesis that supplementary motor area (SMA) facilitation with functional near-infrared spectroscopy–mediated neurofeedback (fNIRS-NFB) augments poststroke gait and balance recovery, we conducted a 2-center, double-blind, randomized controlled trial involving 54 Japanese patients using the 3-meter Timed Up and Go (TUG) test. METHODS: Patients with subcortical stroke-induced mild to moderate gait disturbance more than 12 weeks from onset underwent 6 sessions of SMA neurofeedback facilitation during gait- and balance-related motor imagery using fNIRS-NFB. Participants were randomly allocated to intervention (28 patients) or placebo (sham: 26 patients). In the intervention group, the fNIRS signal contained participants' cortical activation information. The primary outcome was TUG improvement 4 weeks postintervention. RESULTS: The intervention group showed greater improvement in the TUG test (12.84 ± 15.07 seconds, 95% confidence interval 7.00–18.68) than the sham group (5.51 ± 7.64 seconds, 95% confidence interval 2.43–8.60; group difference 7.33 seconds, 95% CI 0.83–13.83; p = 0.028), even after adjusting for covariates (group × time interaction; F(1.23,61.69) = 4.50, p = 0.030, partial η(2) = 0.083). Only the intervention group showed significantly increased imagery-related SMA activation and enhancement of resting-state connectivity between SMA and ventrolateral premotor area. Adverse effects associated with fNIRS-mediated neurofeedback intervention were absent. CONCLUSION: SMA facilitation during motor imagery using fNIRS neurofeedback may augment poststroke gait and balance recovery by modulating the SMA and its related network. CLASSIFICATION OF EVIDENCE: This study provides Class III evidence that for patients with gait disturbance from subcortical stroke, SMA neurofeedback facilitation improves TUG time (UMIN000010723 at UMIN-CTR; umin.ac.jp/english/).