Cargando…

Is the diatom sex clock a clock?

The unique life cycle of diatoms with continuous decreasing and restoration of the cell size leads to periodic fluctuations in cell size distribution and has been regarded as a multi-annual clock. To understand the long-term behaviour of a population analytically, generic mathematical models are inv...

Descripción completa

Detalles Bibliográficos
Autores principales: Fuhrmann-Lieker, Thomas, Kubetschek, Nico, Ziebarth, Jonas, Klassen, Roland, Seiler, Werner
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8205531/
https://www.ncbi.nlm.nih.gov/pubmed/34129790
http://dx.doi.org/10.1098/rsif.2021.0146
Descripción
Sumario:The unique life cycle of diatoms with continuous decreasing and restoration of the cell size leads to periodic fluctuations in cell size distribution and has been regarded as a multi-annual clock. To understand the long-term behaviour of a population analytically, generic mathematical models are investigated algebraically and numerically for their capability to describe periodic oscillations. Whereas the generally accepted simple concepts for the proliferation dynamics do not sustain oscillating behaviour owing to broadening of the size distribution, simulations show that a proposed limited lifetime of a newly synthesized cell wall slows down the relaxation towards a time-invariant equilibrium state to the order of a hundred thousand generations. In combination with seasonal perturbation events, the proliferation scheme with limited lifetime is able to explain long-lasting rhythms that are characteristic for diatom population dynamics. The life cycle thus resembles a pendulum clock that has to be wound up from time to time by seasonal perturbations rather than an oscillator represented by a limit cycle.