Cargando…

Immune amnesia induced by measles and its effects on concurrent epidemics

It has been recently discovered that the measles virus can damage pre-existing immunological memory, destroying B lymphocytes and reducing the diversity of non-specific B cells of the infected host. In particular, this implies that previously acquired immunization from vaccination or direct expositi...

Descripción completa

Detalles Bibliográficos
Autores principales: Morales, Guillermo B., Muñoz, Miguel A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8205533/
https://www.ncbi.nlm.nih.gov/pubmed/34129794
http://dx.doi.org/10.1098/rsif.2021.0153
Descripción
Sumario:It has been recently discovered that the measles virus can damage pre-existing immunological memory, destroying B lymphocytes and reducing the diversity of non-specific B cells of the infected host. In particular, this implies that previously acquired immunization from vaccination or direct exposition to other pathogens could be partially erased in a phenomenon named ‘immune amnesia’, whose effects can become particularly worrisome given the actual rise of anti-vaccination movements. Here, we present the first attempt to incorporate immune amnesia into standard models of epidemic spreading by proposing a simple model for the spreading of two concurrent pathogens causing measles and another generic disease. Different analyses confirm that immune amnesia can have important consequences for epidemic spreading, significantly altering the vaccination coverage required to reach herd immunity. We also uncover the existence of novel propagating and endemic phases induced by immune amnesia. Finally, we discuss the meaning and consequences of our results and their relation with, e.g. immunization strategies, together with the possibility that explosive types of transitions may emerge, making immune-amnesia effects particularly dramatic. This work opens the door to further developments and analyses of immune-amnesia effects, contributing also to the theory of interacting epidemics on complex networks.