Cargando…
A dynamic, ensemble learning approach to forecast dengue fever epidemic years in Brazil using weather and population susceptibility cycles
Transmission of dengue fever depends on a complex interplay of human, climate and mosquito dynamics, which often change in time and space. It is well known that its disease dynamics are highly influenced by multiple factors including population susceptibility to infection as well as by microclimates...
Autores principales: | McGough, Sarah F., Clemente, Leonardo, Kutz, J. Nathan, Santillana, Mauricio |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8205538/ https://www.ncbi.nlm.nih.gov/pubmed/34129785 http://dx.doi.org/10.1098/rsif.2020.1006 |
Ejemplares similares
-
Forecasting dengue fever in Brazil: An assessment of climate conditions
por: Stolerman, Lucas M., et al.
Publicado: (2019) -
Beyond R(0): heterogeneity in secondary infections and probabilistic epidemic forecasting
por: Hébert-Dufresne, Laurent, et al.
Publicado: (2020) -
A farewell to R: time-series models for tracking and forecasting epidemics
por: Harvey, Andrew, et al.
Publicado: (2021) -
Multi-model forecasts of the ongoing Ebola epidemic in the Democratic Republic of Congo, March–October 2019
por: Roosa, Kimberlyn, et al.
Publicado: (2020) -
Extending susceptible-infectious-recovered-susceptible epidemics to allow for gradual waning of immunity
por: El Khalifi, Mohamed, et al.
Publicado: (2023)