Cargando…
Efficient deep neural networks for classification of COVID-19 based on CT images: Virtualization via software defined radio
The novel 2019 coronavirus disease (COVID-19) has infected over 141 million people worldwide since April 20, 2021. More than 200 countries around the world have been affected by the coronavirus pandemic. Screening for COVID-19, we use fast and inexpensive images from computed tomography (CT) scans....
Autores principales: | Fouladi, Saman, Ebadi, M.J., Safaei, Ali A., Bajuri, Mohd Yazid, Ahmadian, Ali |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier B.V.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8205564/ https://www.ncbi.nlm.nih.gov/pubmed/34149118 http://dx.doi.org/10.1016/j.comcom.2021.06.011 |
Ejemplares similares
-
Software-defined radio for engineers
por: Collins, Travis, et al.
Publicado: (2018) -
Implementing Software Defined Radio
por: Grayver, Eugene
Publicado: (2013) -
Explore Software Defined Radio
por: Donat, Wolfram
Publicado: (2021) -
Improved COVID-19 detection with chest x-ray images using deep learning
por: Gupta, Vedika, et al.
Publicado: (2022) -
Attacking IoT with Software defined radio
por: Andersson, Jonathan
Publicado: (2015)