Cargando…
Protective Effect of Optic Atrophy 1 on Cardiomyocyte Oxidative Stress: Roles of Mitophagy, Mitochondrial Fission, and MAPK/ERK Signaling
Myocardial infarction is associated with oxidative stress and mitochondrial damage. However, the regulatory mechanisms underlying cardiomyocyte oxidative stress during myocardial infarction are not fully understood. In the present study, we explored the cardioprotective action of optic atrophy 1- (O...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8205577/ https://www.ncbi.nlm.nih.gov/pubmed/34211623 http://dx.doi.org/10.1155/2021/3726885 |
_version_ | 1783708531291062272 |
---|---|
author | Wang, Yue Han, Zhihua Xu, Zuojun Zhang, Junfeng |
author_facet | Wang, Yue Han, Zhihua Xu, Zuojun Zhang, Junfeng |
author_sort | Wang, Yue |
collection | PubMed |
description | Myocardial infarction is associated with oxidative stress and mitochondrial damage. However, the regulatory mechanisms underlying cardiomyocyte oxidative stress during myocardial infarction are not fully understood. In the present study, we explored the cardioprotective action of optic atrophy 1- (Opa1-) mediated mitochondrial autophagy (mitophagy) in oxidative stress-challenged cardiomyocytes, with a focus on mitochondrial homeostasis and the MAPK/ERK pathway. Our results demonstrated that overexpression of Opa1 in cultured rat H9C2 cardiomyocytes, a procedure that stimulates mitophagy, attenuates oxidative stress and increases cellular antioxidant capacity. Activation of Opa1-mediated mitophagy suppressed cardiomyocyte apoptosis by downregulating Bax, caspase-9, and caspase-12 and upregulating Bcl-2 and c-IAP. Using mitochondrial tracker staining and a reactive oxygen species indicator, our assays showed that Opa1-mediated mitophagy attenuated mitochondrial fission and reduced ROS production in cardiomyocytes. In addition, we found that inhibition of the MAPK/ERK pathway abolished the antioxidant action of Opa1-mediated mitophagy in these cells. Taken together, our data demonstrate that Opa1-mediated mitophagy protects cardiomyocytes against oxidative stress damage through inhibition of mitochondrial fission and activation of MAPK/ERK signaling. These findings reveal a critical role for Opa1 in the modulation of cardiomyocyte redox balance and suggest a potential target for the treatment of myocardial infarction. |
format | Online Article Text |
id | pubmed-8205577 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Hindawi |
record_format | MEDLINE/PubMed |
spelling | pubmed-82055772021-06-30 Protective Effect of Optic Atrophy 1 on Cardiomyocyte Oxidative Stress: Roles of Mitophagy, Mitochondrial Fission, and MAPK/ERK Signaling Wang, Yue Han, Zhihua Xu, Zuojun Zhang, Junfeng Oxid Med Cell Longev Research Article Myocardial infarction is associated with oxidative stress and mitochondrial damage. However, the regulatory mechanisms underlying cardiomyocyte oxidative stress during myocardial infarction are not fully understood. In the present study, we explored the cardioprotective action of optic atrophy 1- (Opa1-) mediated mitochondrial autophagy (mitophagy) in oxidative stress-challenged cardiomyocytes, with a focus on mitochondrial homeostasis and the MAPK/ERK pathway. Our results demonstrated that overexpression of Opa1 in cultured rat H9C2 cardiomyocytes, a procedure that stimulates mitophagy, attenuates oxidative stress and increases cellular antioxidant capacity. Activation of Opa1-mediated mitophagy suppressed cardiomyocyte apoptosis by downregulating Bax, caspase-9, and caspase-12 and upregulating Bcl-2 and c-IAP. Using mitochondrial tracker staining and a reactive oxygen species indicator, our assays showed that Opa1-mediated mitophagy attenuated mitochondrial fission and reduced ROS production in cardiomyocytes. In addition, we found that inhibition of the MAPK/ERK pathway abolished the antioxidant action of Opa1-mediated mitophagy in these cells. Taken together, our data demonstrate that Opa1-mediated mitophagy protects cardiomyocytes against oxidative stress damage through inhibition of mitochondrial fission and activation of MAPK/ERK signaling. These findings reveal a critical role for Opa1 in the modulation of cardiomyocyte redox balance and suggest a potential target for the treatment of myocardial infarction. Hindawi 2021-06-07 /pmc/articles/PMC8205577/ /pubmed/34211623 http://dx.doi.org/10.1155/2021/3726885 Text en Copyright © 2021 Yue Wang et al. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Wang, Yue Han, Zhihua Xu, Zuojun Zhang, Junfeng Protective Effect of Optic Atrophy 1 on Cardiomyocyte Oxidative Stress: Roles of Mitophagy, Mitochondrial Fission, and MAPK/ERK Signaling |
title | Protective Effect of Optic Atrophy 1 on Cardiomyocyte Oxidative Stress: Roles of Mitophagy, Mitochondrial Fission, and MAPK/ERK Signaling |
title_full | Protective Effect of Optic Atrophy 1 on Cardiomyocyte Oxidative Stress: Roles of Mitophagy, Mitochondrial Fission, and MAPK/ERK Signaling |
title_fullStr | Protective Effect of Optic Atrophy 1 on Cardiomyocyte Oxidative Stress: Roles of Mitophagy, Mitochondrial Fission, and MAPK/ERK Signaling |
title_full_unstemmed | Protective Effect of Optic Atrophy 1 on Cardiomyocyte Oxidative Stress: Roles of Mitophagy, Mitochondrial Fission, and MAPK/ERK Signaling |
title_short | Protective Effect of Optic Atrophy 1 on Cardiomyocyte Oxidative Stress: Roles of Mitophagy, Mitochondrial Fission, and MAPK/ERK Signaling |
title_sort | protective effect of optic atrophy 1 on cardiomyocyte oxidative stress: roles of mitophagy, mitochondrial fission, and mapk/erk signaling |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8205577/ https://www.ncbi.nlm.nih.gov/pubmed/34211623 http://dx.doi.org/10.1155/2021/3726885 |
work_keys_str_mv | AT wangyue protectiveeffectofopticatrophy1oncardiomyocyteoxidativestressrolesofmitophagymitochondrialfissionandmapkerksignaling AT hanzhihua protectiveeffectofopticatrophy1oncardiomyocyteoxidativestressrolesofmitophagymitochondrialfissionandmapkerksignaling AT xuzuojun protectiveeffectofopticatrophy1oncardiomyocyteoxidativestressrolesofmitophagymitochondrialfissionandmapkerksignaling AT zhangjunfeng protectiveeffectofopticatrophy1oncardiomyocyteoxidativestressrolesofmitophagymitochondrialfissionandmapkerksignaling |