Cargando…
PAR2 Deficiency Induces Mitochondrial ROS Generation and Dysfunctions, Leading to the Inhibition of Adipocyte Differentiation
Protease-activated receptor 2 (PAR2) is a member of G-protein-coupled receptors and affects ligand-modulated calcium signaling. Although PAR2 signaling promotes obesity and adipose tissue inflammation in high fat- (HF-) fed conditions, its role in adipocyte differentiation under nonobesogenic condit...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8205587/ https://www.ncbi.nlm.nih.gov/pubmed/34211632 http://dx.doi.org/10.1155/2021/6683033 |
_version_ | 1783708533687058432 |
---|---|
author | Park, Yeo Jin Lee, Bonggi Kim, Dae Hyun Kwon, Eun-Bin Go, Younghoon Ha, Sugyeong Lee, Min-Kyeong Yu, Hak Sun Chung, Hae Young |
author_facet | Park, Yeo Jin Lee, Bonggi Kim, Dae Hyun Kwon, Eun-Bin Go, Younghoon Ha, Sugyeong Lee, Min-Kyeong Yu, Hak Sun Chung, Hae Young |
author_sort | Park, Yeo Jin |
collection | PubMed |
description | Protease-activated receptor 2 (PAR2) is a member of G-protein-coupled receptors and affects ligand-modulated calcium signaling. Although PAR2 signaling promotes obesity and adipose tissue inflammation in high fat- (HF-) fed conditions, its role in adipocyte differentiation under nonobesogenic conditions needs to be elucidated. Here, we used several tissues and primary-cultured adipocytes of mice lacking PAR2 to study its role in the development of adipose tissues. C57BL/6J mice with PAR2 deficiency exhibited a mild lipodystrophy-like phenotype in a chow diet-fed condition. When adipocyte differentiation was examined using primary-cultured preadipocytes, PAR2 deficiency led to a notable decrease in adipocyte differentiation and related protein expression, and PAR2 agonist treatment elevated adipocyte differentiation. Regarding the mechanism, PAR2-deficient preadipocytes exhibited impaired mitochondrial energy consumption. Further studies indicated that calcium-related signaling pathways for mitochondrial biogenesis are disrupted in the adipose tissues of PAR2-deficient mice and PAR2-deficient preadipocytes. Also, a PAR2 antagonist elevated mitochondrial reactive oxygen species and reduced the MitoTracker fluorescent signal in preadipocytes. Our studies revealed that PAR2 is important for the development of adipose tissue under basal conditions through the regulation of mitochondrial biogenesis and adipocyte differentiation. |
format | Online Article Text |
id | pubmed-8205587 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Hindawi |
record_format | MEDLINE/PubMed |
spelling | pubmed-82055872021-06-30 PAR2 Deficiency Induces Mitochondrial ROS Generation and Dysfunctions, Leading to the Inhibition of Adipocyte Differentiation Park, Yeo Jin Lee, Bonggi Kim, Dae Hyun Kwon, Eun-Bin Go, Younghoon Ha, Sugyeong Lee, Min-Kyeong Yu, Hak Sun Chung, Hae Young Oxid Med Cell Longev Research Article Protease-activated receptor 2 (PAR2) is a member of G-protein-coupled receptors and affects ligand-modulated calcium signaling. Although PAR2 signaling promotes obesity and adipose tissue inflammation in high fat- (HF-) fed conditions, its role in adipocyte differentiation under nonobesogenic conditions needs to be elucidated. Here, we used several tissues and primary-cultured adipocytes of mice lacking PAR2 to study its role in the development of adipose tissues. C57BL/6J mice with PAR2 deficiency exhibited a mild lipodystrophy-like phenotype in a chow diet-fed condition. When adipocyte differentiation was examined using primary-cultured preadipocytes, PAR2 deficiency led to a notable decrease in adipocyte differentiation and related protein expression, and PAR2 agonist treatment elevated adipocyte differentiation. Regarding the mechanism, PAR2-deficient preadipocytes exhibited impaired mitochondrial energy consumption. Further studies indicated that calcium-related signaling pathways for mitochondrial biogenesis are disrupted in the adipose tissues of PAR2-deficient mice and PAR2-deficient preadipocytes. Also, a PAR2 antagonist elevated mitochondrial reactive oxygen species and reduced the MitoTracker fluorescent signal in preadipocytes. Our studies revealed that PAR2 is important for the development of adipose tissue under basal conditions through the regulation of mitochondrial biogenesis and adipocyte differentiation. Hindawi 2021-06-08 /pmc/articles/PMC8205587/ /pubmed/34211632 http://dx.doi.org/10.1155/2021/6683033 Text en Copyright © 2021 Yeo Jin Park et al. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Park, Yeo Jin Lee, Bonggi Kim, Dae Hyun Kwon, Eun-Bin Go, Younghoon Ha, Sugyeong Lee, Min-Kyeong Yu, Hak Sun Chung, Hae Young PAR2 Deficiency Induces Mitochondrial ROS Generation and Dysfunctions, Leading to the Inhibition of Adipocyte Differentiation |
title | PAR2 Deficiency Induces Mitochondrial ROS Generation and Dysfunctions, Leading to the Inhibition of Adipocyte Differentiation |
title_full | PAR2 Deficiency Induces Mitochondrial ROS Generation and Dysfunctions, Leading to the Inhibition of Adipocyte Differentiation |
title_fullStr | PAR2 Deficiency Induces Mitochondrial ROS Generation and Dysfunctions, Leading to the Inhibition of Adipocyte Differentiation |
title_full_unstemmed | PAR2 Deficiency Induces Mitochondrial ROS Generation and Dysfunctions, Leading to the Inhibition of Adipocyte Differentiation |
title_short | PAR2 Deficiency Induces Mitochondrial ROS Generation and Dysfunctions, Leading to the Inhibition of Adipocyte Differentiation |
title_sort | par2 deficiency induces mitochondrial ros generation and dysfunctions, leading to the inhibition of adipocyte differentiation |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8205587/ https://www.ncbi.nlm.nih.gov/pubmed/34211632 http://dx.doi.org/10.1155/2021/6683033 |
work_keys_str_mv | AT parkyeojin par2deficiencyinducesmitochondrialrosgenerationanddysfunctionsleadingtotheinhibitionofadipocytedifferentiation AT leebonggi par2deficiencyinducesmitochondrialrosgenerationanddysfunctionsleadingtotheinhibitionofadipocytedifferentiation AT kimdaehyun par2deficiencyinducesmitochondrialrosgenerationanddysfunctionsleadingtotheinhibitionofadipocytedifferentiation AT kwoneunbin par2deficiencyinducesmitochondrialrosgenerationanddysfunctionsleadingtotheinhibitionofadipocytedifferentiation AT goyounghoon par2deficiencyinducesmitochondrialrosgenerationanddysfunctionsleadingtotheinhibitionofadipocytedifferentiation AT hasugyeong par2deficiencyinducesmitochondrialrosgenerationanddysfunctionsleadingtotheinhibitionofadipocytedifferentiation AT leeminkyeong par2deficiencyinducesmitochondrialrosgenerationanddysfunctionsleadingtotheinhibitionofadipocytedifferentiation AT yuhaksun par2deficiencyinducesmitochondrialrosgenerationanddysfunctionsleadingtotheinhibitionofadipocytedifferentiation AT chunghaeyoung par2deficiencyinducesmitochondrialrosgenerationanddysfunctionsleadingtotheinhibitionofadipocytedifferentiation |