Cargando…

Mathematical Multidimensional Modelling and Structural Artificial Intelligence Pipelines Provide Insights for the Designing of Highly Specific AntiSARS-CoV2 Agents

COVID19 is the most impactful pandemic of recent times worldwide. It is a highly infectious disease that is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2 virus), To date there is specific drug nor vaccination against COVID19. Therefor the need for novel and pioneering anti-CO...

Descripción completa

Detalles Bibliográficos
Autores principales: Vlachakis, Dimitrios, Vlamos, Panayiotis
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8205651/
http://dx.doi.org/10.1007/s11786-021-00517-0
Descripción
Sumario:COVID19 is the most impactful pandemic of recent times worldwide. It is a highly infectious disease that is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2 virus), To date there is specific drug nor vaccination against COVID19. Therefor the need for novel and pioneering anti-COVID19 is of paramount importance. In this direction, computer-aided drug design constitutes a very promising antiviral approach for the discovery and analysis of drugs and molecules with biological activity against SARS-CoV2. In silico modelling takes advantage of the massive amounts of biological and chemical data available on the nature of the interactions between the targeted systems and molecules, as well as the rapid progress of computational tools and software. Herein, we describe the potential of the merging of mathematical modelling, artificial intelligence and learning techniques into seamless computational pipelines for the rapid and efficient discovery and design of potent anti- SARS-CoV-2 modulators.