Cargando…
RetiNerveNet: using recursive deep learning to estimate pointwise 24-2 visual field data based on retinal structure
Glaucoma is the leading cause of irreversible blindness in the world, affecting over 70 million people. The cumbersome Standard Automated Perimetry (SAP) test is most frequently used to detect visual loss due to glaucoma. Due to the SAP test’s innate difficulty and its high test-retest variability,...
Autores principales: | Datta, Shounak, Mariottoni, Eduardo B., Dov, David, Jammal, Alessandro A., Carin, Lawrence, Medeiros, Felipe A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8206091/ https://www.ncbi.nlm.nih.gov/pubmed/34131181 http://dx.doi.org/10.1038/s41598-021-91493-9 |
Ejemplares similares
-
Artificial Intelligence Mapping of Structure to Function in Glaucoma
por: Mariottoni, Eduardo B., et al.
Publicado: (2020) -
Detection of Progressive Glaucomatous Optic Nerve Damage on Fundus Photographs with Deep Learning
por: Medeiros, Felipe A., et al.
Publicado: (2021) -
Quantification of Retinal Nerve Fibre Layer Thickness on Optical Coherence Tomography with a Deep Learning Segmentation-Free Approach
por: Mariottoni, Eduardo B., et al.
Publicado: (2020) -
Detecting Retinal Nerve Fibre Layer Segmentation Errors on Spectral Domain-Optical Coherence Tomography with a Deep Learning Algorithm
por: Jammal, Alessandro A., et al.
Publicado: (2019) -
Reti sociali e diffusione di epidemie
por: Piccardi, Carlo
Publicado: (2016)