Cargando…
Real-time prediction of Poisson’s ratio from drilling parameters using machine learning tools
Rock elastic properties such as Poisson’s ratio influence wellbore stability, in-situ stresses estimation, drilling performance, and hydraulic fracturing design. Conventionally, Poisson’s ratio estimation requires either laboratory experiments or derived from sonic logs, the main concerns of these m...
Autores principales: | Siddig, Osama, Gamal, Hany, Elkatatny, Salaheldin, Abdulraheem, Abdulazeez |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8206145/ https://www.ncbi.nlm.nih.gov/pubmed/34131264 http://dx.doi.org/10.1038/s41598-021-92082-6 |
Ejemplares similares
-
Intelligent Prediction for Rock Porosity While Drilling Complex Lithology in Real Time
por: Gamal, Hany, et al.
Publicado: (2021) -
Exposure Time Impact on the Geomechanical Characteristics of Sandstone Formation during Horizontal Drilling
por: Gamal, Hany, et al.
Publicado: (2020) -
Real-time prediction of formation pressure gradient while drilling
por: Abdelaal, Ahmed, et al.
Publicado: (2022) -
Data-Driven Modeling Approach for Pore Pressure Gradient
Prediction while Drilling from Drilling Parameters
por: Abdelaal, Ahmed, et al.
Publicado: (2021) -
Real-Time Prediction of Rheological Properties of Invert Emulsion Mud Using Adaptive Neuro-Fuzzy Inference System
por: Alsabaa, Ahmed, et al.
Publicado: (2020)