Cargando…
Learning mutational signatures and their multidimensional genomic properties with TensorSignatures
We present TensorSignatures, an algorithm to learn mutational signatures jointly across different variant categories and their genomic localisation and properties. The analysis of 2778 primary and 3824 metastatic cancer genomes of the PCAWG consortium and the HMF cohort shows that all signatures ope...
Autores principales: | Vöhringer, Harald, Hoeck, Arne Van, Cuppen, Edwin, Gerstung, Moritz |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8206343/ https://www.ncbi.nlm.nih.gov/pubmed/34131135 http://dx.doi.org/10.1038/s41467-021-23551-9 |
Ejemplares similares
-
Portrait of a cancer: mutational signature analyses for cancer diagnostics
por: Van Hoeck, Arne, et al.
Publicado: (2019) -
Machine learning-based tissue of origin classification for cancer of unknown primary diagnostics using genome-wide mutation features
por: Nguyen, Luan, et al.
Publicado: (2022) -
Mutational signatures are jointly shaped by DNA damage and repair
por: Volkova, Nadezda V., et al.
Publicado: (2020) -
Common anti-cancer therapies induce somatic mutations in stem cells of healthy tissue
por: Kuijk, Ewart, et al.
Publicado: (2022) -
The genome-wide mutational consequences of DNA hypomethylation
por: Besselink, Nicolle, et al.
Publicado: (2023)