Cargando…
Inferring transcriptomic cell states and transitions only from time series transcriptome data
Cellular stages of biological processes have been characterized using fluorescence-activated cell sorting and genetic perturbations, charting a limited landscape of cellular states. Time series transcriptome data can help define new cellular states at the molecular level since the analysis of transc...
Autores principales: | Jo, Kyuri, Sung, Inyoung, Lee, Dohoon, Jang, Hyuksoon, Kim, Sun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8206345/ https://www.ncbi.nlm.nih.gov/pubmed/34131182 http://dx.doi.org/10.1038/s41598-021-91752-9 |
Ejemplares similares
-
Prioritizing biological pathways by recognizing context in time-series gene expression data
por: Lee, Jusang, et al.
Publicado: (2016) -
Dynamics of embryonic stem cell differentiation inferred from single-cell transcriptomics show a series of transitions through discrete cell states
por: Jang, Sumin, et al.
Publicado: (2017) -
Dynamic inference of cell developmental complex energy landscape from time series single-cell transcriptomic data
por: Jiang, Qi, et al.
Publicado: (2022) -
From time-series transcriptomics to gene regulatory networks: A review on inference methods
por: Marku, Malvina, et al.
Publicado: (2023) -
Inference and multiscale model of epithelial-to-mesenchymal transition via single-cell transcriptomic data
por: Sha, Yutong, et al.
Publicado: (2020)