Cargando…
Comparative effectiveness of medical concept embedding for feature engineering in phenotyping
OBJECTIVE: Feature engineering is a major bottleneck in phenotyping. Properly learned medical concept embeddings (MCEs) capture the semantics of medical concepts, thus are useful for retrieving relevant medical features in phenotyping tasks. We compared the effectiveness of MCEs learned from knowled...
Autores principales: | Lee, Junghwan, Liu, Cong, Kim, Jae Hyun, Butler, Alex, Shang, Ning, Pang, Chao, Natarajan, Karthik, Ryan, Patrick, Ta, Casey, Weng, Chunhua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8206403/ https://www.ncbi.nlm.nih.gov/pubmed/34142015 http://dx.doi.org/10.1093/jamiaopen/ooab028 |
Ejemplares similares
-
Clinical and temporal characterization of COVID-19 subgroups using patient vector embeddings of electronic health records
por: Ta, Casey N, et al.
Publicado: (2022) -
DQueST: dynamic questionnaire for search of clinical trials
por: Liu, Cong, et al.
Publicado: (2019) -
Towards clinical data-driven eligibility criteria optimization for interventional COVID-19 clinical trials
por: Kim, Jae Hyun, et al.
Publicado: (2020) -
Exploiting hierarchy in medical concept embedding*
por: Finch, Anthony, et al.
Publicado: (2021) -
Criteria2Query: a natural language interface to clinical databases for cohort definition
por: Yuan, Chi, et al.
Publicado: (2019)