Cargando…
Improving Risk Identification of Adverse Outcomes in Chronic Heart Failure Using SMOTE+ENN and Machine Learning
PURPOSE: This study sought to develop models with good identification for adverse outcomes in patients with heart failure (HF) and find strong factors that affect prognosis. PATIENTS AND METHODS: A total of 5004 qualifying cases were selected, among which 498 cases had adverse outcomes and 4506 case...
Autores principales: | Wang, Ke, Tian, Jing, Zheng, Chu, Yang, Hong, Ren, Jia, Li, Chenhao, Han, Qinghua, Zhang, Yanbo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8206455/ https://www.ncbi.nlm.nih.gov/pubmed/34149290 http://dx.doi.org/10.2147/RMHP.S310295 |
Ejemplares similares
-
Diabetes mellitus early warning and factor analysis using ensemble Bayesian networks with SMOTE-ENN and Boruta
por: Wang, Xuchun, et al.
Publicado: (2023) -
Kaldere enn i verdensrommet
Publicado: (2009) -
SMOTE-CD: SMOTE for compositional data
por: Nguyen, Teo, et al.
Publicado: (2023) -
Enn tystörm ytin kadotti s hkön
Publicado: (2009) -
Signaler kan gå raskere enn lyset
por: Bøkstedt, H
Publicado: (1982)