Cargando…
A machine learning model for multi-night actigraphic detection of chronic insomnia: development and validation of a pre-screening tool
We propose a novel machine learning-based method for analysing multi-night actigraphy signals to objectively classify and differentiate nocturnal awakenings in individuals with chronic insomnia (CI) and their cohabiting healthy partners. We analysed nocturnal actigraphy signals from 40 cohabiting co...
Autores principales: | Kusmakar, S., Karmakar, C., Zhu, Y., Shelyag, S., Drummond, S. P. A., Ellis, J. G., Angelova, M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8206690/ https://www.ncbi.nlm.nih.gov/pubmed/34150313 http://dx.doi.org/10.1098/rsos.202264 |
Ejemplares similares
-
Differentiating acute from chronic insomnia with machine learning from actigraphy time series data
por: Rani, S., et al.
Publicado: (2022) -
Autonomous Tool for Monitoring Multi-Morbidity Health Conditions in UAE and India
por: Atalla, Shadi, et al.
Publicado: (2022) -
The use of statistical and machine learning tools to accurately quantify the energy performance of residential buildings
por: Ibrahim, Dina M., et al.
Publicado: (2022) -
Early breast cancer detection and differentiation tool based on tissue impedance characteristics and machine learning
por: Salem, Soumaya Ben, et al.
Publicado: (2023) -
Development and Validation of Manually Modified and Supervised Machine Learning Clinical Assessment Algorithms for Malaria in Nigerian Children
por: McLaughlin, Megan, et al.
Publicado: (2022)