Cargando…

The evolution of trait correlations constrains phenotypic adaptation to high CO(2) in a eukaryotic alga

Microbes form the base of food webs and drive biogeochemical cycling. Predicting the effects of microbial evolution on global elemental cycles remains a significant challenge due to the sheer number of interacting environmental and trait combinations. Here, we present an approach for integrating mul...

Descripción completa

Detalles Bibliográficos
Autores principales: Walworth, Nathan G., Hinners, Jana, Argyle, Phoebe A., Leles, Suzana G., Doblin, Martina A., Collins, Sinéad, Levine, Naomi M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8206706/
https://www.ncbi.nlm.nih.gov/pubmed/34130504
http://dx.doi.org/10.1098/rspb.2021.0940
_version_ 1783708679835484160
author Walworth, Nathan G.
Hinners, Jana
Argyle, Phoebe A.
Leles, Suzana G.
Doblin, Martina A.
Collins, Sinéad
Levine, Naomi M.
author_facet Walworth, Nathan G.
Hinners, Jana
Argyle, Phoebe A.
Leles, Suzana G.
Doblin, Martina A.
Collins, Sinéad
Levine, Naomi M.
author_sort Walworth, Nathan G.
collection PubMed
description Microbes form the base of food webs and drive biogeochemical cycling. Predicting the effects of microbial evolution on global elemental cycles remains a significant challenge due to the sheer number of interacting environmental and trait combinations. Here, we present an approach for integrating multivariate trait data into a predictive model of trait evolution. We investigated the outcome of thousands of possible adaptive walks parameterized using empirical evolution data from the alga Chlamydomonas exposed to high CO(2). We found that the direction of historical bias (existing trait correlations) influenced both the rate of adaptation and the evolved phenotypes (trait combinations). Critically, we use fitness landscapes derived directly from empirical trait values to capture known evolutionary phenomena. This work demonstrates that ecological models need to represent both changes in traits and changes in the correlation between traits in order to accurately capture phytoplankton evolution and predict future shifts in elemental cycling.
format Online
Article
Text
id pubmed-8206706
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher The Royal Society
record_format MEDLINE/PubMed
spelling pubmed-82067062021-06-17 The evolution of trait correlations constrains phenotypic adaptation to high CO(2) in a eukaryotic alga Walworth, Nathan G. Hinners, Jana Argyle, Phoebe A. Leles, Suzana G. Doblin, Martina A. Collins, Sinéad Levine, Naomi M. Proc Biol Sci Evolution Microbes form the base of food webs and drive biogeochemical cycling. Predicting the effects of microbial evolution on global elemental cycles remains a significant challenge due to the sheer number of interacting environmental and trait combinations. Here, we present an approach for integrating multivariate trait data into a predictive model of trait evolution. We investigated the outcome of thousands of possible adaptive walks parameterized using empirical evolution data from the alga Chlamydomonas exposed to high CO(2). We found that the direction of historical bias (existing trait correlations) influenced both the rate of adaptation and the evolved phenotypes (trait combinations). Critically, we use fitness landscapes derived directly from empirical trait values to capture known evolutionary phenomena. This work demonstrates that ecological models need to represent both changes in traits and changes in the correlation between traits in order to accurately capture phytoplankton evolution and predict future shifts in elemental cycling. The Royal Society 2021-06-30 2021-06-16 /pmc/articles/PMC8206706/ /pubmed/34130504 http://dx.doi.org/10.1098/rspb.2021.0940 Text en © 2021 The Authors. https://creativecommons.org/licenses/by/4.0/Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, provided the original author and source are credited.
spellingShingle Evolution
Walworth, Nathan G.
Hinners, Jana
Argyle, Phoebe A.
Leles, Suzana G.
Doblin, Martina A.
Collins, Sinéad
Levine, Naomi M.
The evolution of trait correlations constrains phenotypic adaptation to high CO(2) in a eukaryotic alga
title The evolution of trait correlations constrains phenotypic adaptation to high CO(2) in a eukaryotic alga
title_full The evolution of trait correlations constrains phenotypic adaptation to high CO(2) in a eukaryotic alga
title_fullStr The evolution of trait correlations constrains phenotypic adaptation to high CO(2) in a eukaryotic alga
title_full_unstemmed The evolution of trait correlations constrains phenotypic adaptation to high CO(2) in a eukaryotic alga
title_short The evolution of trait correlations constrains phenotypic adaptation to high CO(2) in a eukaryotic alga
title_sort evolution of trait correlations constrains phenotypic adaptation to high co(2) in a eukaryotic alga
topic Evolution
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8206706/
https://www.ncbi.nlm.nih.gov/pubmed/34130504
http://dx.doi.org/10.1098/rspb.2021.0940
work_keys_str_mv AT walworthnathang theevolutionoftraitcorrelationsconstrainsphenotypicadaptationtohighco2inaeukaryoticalga
AT hinnersjana theevolutionoftraitcorrelationsconstrainsphenotypicadaptationtohighco2inaeukaryoticalga
AT argylephoebea theevolutionoftraitcorrelationsconstrainsphenotypicadaptationtohighco2inaeukaryoticalga
AT lelessuzanag theevolutionoftraitcorrelationsconstrainsphenotypicadaptationtohighco2inaeukaryoticalga
AT doblinmartinaa theevolutionoftraitcorrelationsconstrainsphenotypicadaptationtohighco2inaeukaryoticalga
AT collinssinead theevolutionoftraitcorrelationsconstrainsphenotypicadaptationtohighco2inaeukaryoticalga
AT levinenaomim theevolutionoftraitcorrelationsconstrainsphenotypicadaptationtohighco2inaeukaryoticalga
AT walworthnathang evolutionoftraitcorrelationsconstrainsphenotypicadaptationtohighco2inaeukaryoticalga
AT hinnersjana evolutionoftraitcorrelationsconstrainsphenotypicadaptationtohighco2inaeukaryoticalga
AT argylephoebea evolutionoftraitcorrelationsconstrainsphenotypicadaptationtohighco2inaeukaryoticalga
AT lelessuzanag evolutionoftraitcorrelationsconstrainsphenotypicadaptationtohighco2inaeukaryoticalga
AT doblinmartinaa evolutionoftraitcorrelationsconstrainsphenotypicadaptationtohighco2inaeukaryoticalga
AT collinssinead evolutionoftraitcorrelationsconstrainsphenotypicadaptationtohighco2inaeukaryoticalga
AT levinenaomim evolutionoftraitcorrelationsconstrainsphenotypicadaptationtohighco2inaeukaryoticalga