Cargando…
Local impacts of climate change on winter wheat in Great Britain
Under future CMIP5 climate change scenarios for 2050, an increase in wheat yield of about 10% is predicted in Great Britain (GB) as a result of the combined effect of CO(2) fertilization and a shift in phenology. Compared to the present day, crops escape increases in the climate impacts of drought a...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8206732/ https://www.ncbi.nlm.nih.gov/pubmed/34150311 http://dx.doi.org/10.1098/rsos.201669 |
Sumario: | Under future CMIP5 climate change scenarios for 2050, an increase in wheat yield of about 10% is predicted in Great Britain (GB) as a result of the combined effect of CO(2) fertilization and a shift in phenology. Compared to the present day, crops escape increases in the climate impacts of drought and heat stresses on grain yield by developing before these stresses can occur. In the future, yield losses from water stress over a growing season will remain about the same across Great Britain with losses reaching around 20% of potential yield, while losses from drought around flowering will decrease and account for about 9% of water limited yield. Yield losses from heat stress around flowering will remain negligible in the future. These conclusions are drawn from a modelling study based on the response of the Sirius wheat simulation model to local-scale 2050-climate scenarios derived from 19 Global Climate Models from the CMIP5 ensemble at 25 locations representing current or potential wheat-growing areas in GB. However, depending on susceptibility to water stress, substantial interannual yield variation between locations is predicted, in some cases suggesting low wheat yield stability. For this reason, local-scale studies should be performed to evaluate uncertainties in yield prediction related to future weather patterns. |
---|