Cargando…
Machine learning applied to serum and cerebrospinal fluid metabolomes revealed altered arginine metabolism in neonatal sepsis with meningoencephalitis
BACKGROUND: Neonatal sepsis with meningoencephalitis is a common complication of sepsis, which is a leading cause of neonatal death and neurological dysfunction. Early identification of neonatal sepsis with meningoencephalitis is particularly important for reducing brain damage. We recruited 70 pati...
Autores principales: | Zhang, Peng, Wang, Zhangxing, Qiu, Huixian, Zhou, Wenhao, Wang, Mingbang, Cheng, Guoqiang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Research Network of Computational and Structural Biotechnology
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8207169/ https://www.ncbi.nlm.nih.gov/pubmed/34188777 http://dx.doi.org/10.1016/j.csbj.2021.05.024 |
Ejemplares similares
-
Clinical Manifestations of Neonatal Hyperbilirubinemia Are Related to Alterations in the Gut Microbiota
por: Zhang, Xueli, et al.
Publicado: (2022) -
Machine learning approach identifies meconium metabolites as potential biomarkers of neonatal hyperbilirubinemia
por: Zeng, Shujuan, et al.
Publicado: (2022) -
Entamoeba histolytica meningoencephalitis diagnosed by trophozoites in cerebrospinal fluid
por: Goh, L M L, et al.
Publicado: (2013) -
Importance of Follow-Up Cerebrospinal Fluid Analysis in Cryptococcal Meningoencephalitis
por: Skripuletz, Thomas, et al.
Publicado: (2014) -
A Japanese case of amoebic meningoencephalitis initially diagnosed by cerebrospinal fluid cytology
por: Aoki, Ryogo, et al.
Publicado: (2020)