Cargando…
Postmortem whole-genome sequencing on a dried blood spot identifies a novel homozygous SUOX variant causing isolated sulfite oxidase deficiency
Rapid whole-genome sequencing (rWGS) has shown that genetic diseases are a common cause of infant mortality in neonatal intensive care units. Dried blood spots collected for newborn screening allow investigation of causes of infant mortality that were not diagnosed during life. Here, we present a ne...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8208044/ https://www.ncbi.nlm.nih.gov/pubmed/34117075 http://dx.doi.org/10.1101/mcs.a006091 |
Sumario: | Rapid whole-genome sequencing (rWGS) has shown that genetic diseases are a common cause of infant mortality in neonatal intensive care units. Dried blood spots collected for newborn screening allow investigation of causes of infant mortality that were not diagnosed during life. Here, we present a neonate who developed seizures and encephalopathy on the third day of life that was refractory to antiepileptic medications. The patient died on day of life 16 after progressive respiratory failure and sepsis. The parents had lost two prior children after similar presentations, neither of whom had a definitive diagnosis. Postmortem rWGS of a dried blood spot identified a pathogenic homozygous frameshift variant in the SUOX gene associated with isolated sulfite oxidase deficiency (c.1390_1391del, p.Leu464GlyfsTer10). This case highlights that early, accurate molecular diagnosis has the potential to influence prenatal counseling and guide management in rare, genetic disorders and has added importance in cases of a strong family history and risk factors such as consanguinity. |
---|