Cargando…
Letter to the editor: “Not all biases are bad: equitable and inequitable biases in machine learning and radiology”
Artificial intelligence algorithms are booming in medicine, and the question of biases induced or perpetuated by these tools is a very important topic. There is a greater risk of these biases in radiology, which is now the primary diagnostic tool in modern treatment. Some authors have recently propo...
Autores principales: | Iannessi, Antoine, Beaumont, Hubert, Bertrand, Anne Sophie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8208365/ https://www.ncbi.nlm.nih.gov/pubmed/34132919 http://dx.doi.org/10.1186/s13244-021-01022-5 |
Ejemplares similares
-
Reply to Letter to the Editor on “Not all biases are bad: equitable and inequitable biases in machine learning and radiology”
por: Pot, Mirjam, et al.
Publicado: (2021) -
Not all biases are bad: equitable and inequitable biases in machine learning and radiology
por: Pot, Mirjam, et al.
Publicado: (2021) -
Caveat emptor NICE: biased use of cost-effectiveness is inefficient and inequitable
por: Dowie, Jack, et al.
Publicado: (2015) -
Misunderstanding publication bias: editors are not blameless after all
por: Senn, Stephen
Publicado: (2012) -
Racial underrepresentation in dermatological datasets leads to biased machine learning models and inequitable healthcare
por: Kleinberg, Giona, et al.
Publicado: (2022)