Cargando…
Variational regularisation for inverse problems with imperfect forward operators and general noise models
We study variational regularisation methods for inverse problems with imperfect forward operators whose errors can be modelled by order intervals in a partial order of a Banach lattice. We carry out analysis with respect to existence and convex duality for general data fidelity terms and regularisat...
Autores principales: | Bungert, Leon, Burger, Martin, Korolev, Yury, Schönlieb, Carola-Bibiane |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
IOP Publishing
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8208616/ https://www.ncbi.nlm.nih.gov/pubmed/34149144 http://dx.doi.org/10.1088/1361-6420/abc531 |
Ejemplares similares
-
Infimal Convolution Regularisation Functionals of BV and [Formula: see text] Spaces: Part I: The Finite [Formula: see text] Case
por: Burger, Martin, et al.
Publicado: (2016) -
Bilevel Parameter Learning for Higher-Order Total Variation Regularisation Models
por: De los Reyes, J. C., et al.
Publicado: (2016) -
Equivariant neural networks for inverse problems
por: Celledoni, Elena, et al.
Publicado: (2021) -
Image Reconstruction in Light-Sheet Microscopy: Spatially Varying Deconvolution and Mixed Noise
por: Toader, Bogdan, et al.
Publicado: (2022) -
Variational regularization for systems of inverse problems: Tikhonov regularization with multiple forward operators
por: Huber, Richard
Publicado: (2019)