Cargando…
Grading hypoxic-ischemic encephalopathy in neonatal EEG with convolutional neural networks and quadratic time–frequency distributions
Objective. To develop an automated system to classify the severity of hypoxic-ischaemic encephalopathy injury (HIE) in neonates from the background electroencephalogram (EEG). Approach. By combining a quadratic time–frequency distribution (TFD) with a convolutional neural network, we develop a syste...
Autores principales: | Raurale, Sumit A, Boylan, Geraldine B, Mathieson, Sean R, Marnane, William P, Lightbody, Gordon, O’Toole, John M |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
IOP Publishing
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8208632/ https://www.ncbi.nlm.nih.gov/pubmed/33618337 http://dx.doi.org/10.1088/1741-2552/abe8ae |
Ejemplares similares
-
Neonatal EEG graded for severity of background abnormalities in hypoxic-ischaemic encephalopathy
por: O’Toole, John M., et al.
Publicado: (2023) -
An Automated System for Grading EEG Abnormality in Term Neonates with Hypoxic-Ischaemic Encephalopathy
por: Stevenson, N. J., et al.
Publicado: (2012) -
Heart rate variability analysis for the prediction of EEG grade in infants with hypoxic ischaemic encephalopathy within the first 12 h of birth
por: Pavel, Andreea M, et al.
Publicado: (2023) -
Machine learning for the early prediction of infants with electrographic seizures in neonatal hypoxic‐ischemic encephalopathy
por: Pavel, Andreea M., et al.
Publicado: (2022) -
Coupling between mean blood pressure and EEG in preterm neonates is associated with reduced illness severity scores
por: Semenova, Oksana, et al.
Publicado: (2018)