Cargando…

Complete, closed and curated genome sequences of Photobacterium damselae subsp. piscicida isolates from Australia indicate mobilome-driven localized evolution and novel pathogenicity determinants

Despite the recent advances in sequencing technologies, the complete assembly of multi-chromosome genomes of the Vibrionaceae , often containing several plasmids, remains challenging. Using a combination of Oxford Nanopore MinION long reads and short Illumina reads, we fully sequenced, closed and cu...

Descripción completa

Detalles Bibliográficos
Autores principales: Baseggio, Laura, Rudenko, Oleksandra, Buller, Nicky, Landos, Matt, Englestädter, Jan, Barnes, Andrew C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Microbiology Society 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8208687/
https://www.ncbi.nlm.nih.gov/pubmed/33885359
http://dx.doi.org/10.1099/mgen.0.000562
_version_ 1783708971144577024
author Baseggio, Laura
Rudenko, Oleksandra
Buller, Nicky
Landos, Matt
Englestädter, Jan
Barnes, Andrew C.
author_facet Baseggio, Laura
Rudenko, Oleksandra
Buller, Nicky
Landos, Matt
Englestädter, Jan
Barnes, Andrew C.
author_sort Baseggio, Laura
collection PubMed
description Despite the recent advances in sequencing technologies, the complete assembly of multi-chromosome genomes of the Vibrionaceae , often containing several plasmids, remains challenging. Using a combination of Oxford Nanopore MinION long reads and short Illumina reads, we fully sequenced, closed and curated the genomes of two strains of a primary aquatic pathogen Photobacterium damselae subsp. piscicida isolated in Australia. These are also the first genome sequences of P. damselae subsp. piscicida isolated in Oceania and, to our knowledge, in the Southern hemisphere. We also investigated the phylogenetic relationships between Australian and overseas isolates, revealing that Australian P. damselae subsp. piscicida are more closely related to the Asian and American strains rather than to the European ones. We investigated the mobilome and present new evidence showing that a host specialization process and progressive adaptive evolution to fish are ongoing in P. damselae subsp. piscicida , and are largely mediated by transposable elements, predominantly in chromosome 2, and by plasmids. Finally, we identified two novel potential virulence determinants in P. damselae subsp. piscicida – a chorismate mutase gene, which is ubiquitously retained and co-localized with the AIP56 apoptogenic toxin-encoding gene on the pPHDP10 plasmid, and transfer-messenger RNA gene ssrA located on the main chromosome, homologous to a critical-to-virulence determinant in Yersinia pseudotuberculosis . Our study describes, to our knowledge, the only fully closed and manually curated genomes of P. damselae subsp. piscicida available to date, offering new insights into this important fish pathogen and its evolution.
format Online
Article
Text
id pubmed-8208687
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Microbiology Society
record_format MEDLINE/PubMed
spelling pubmed-82086872021-06-17 Complete, closed and curated genome sequences of Photobacterium damselae subsp. piscicida isolates from Australia indicate mobilome-driven localized evolution and novel pathogenicity determinants Baseggio, Laura Rudenko, Oleksandra Buller, Nicky Landos, Matt Englestädter, Jan Barnes, Andrew C. Microb Genom Research Articles Despite the recent advances in sequencing technologies, the complete assembly of multi-chromosome genomes of the Vibrionaceae , often containing several plasmids, remains challenging. Using a combination of Oxford Nanopore MinION long reads and short Illumina reads, we fully sequenced, closed and curated the genomes of two strains of a primary aquatic pathogen Photobacterium damselae subsp. piscicida isolated in Australia. These are also the first genome sequences of P. damselae subsp. piscicida isolated in Oceania and, to our knowledge, in the Southern hemisphere. We also investigated the phylogenetic relationships between Australian and overseas isolates, revealing that Australian P. damselae subsp. piscicida are more closely related to the Asian and American strains rather than to the European ones. We investigated the mobilome and present new evidence showing that a host specialization process and progressive adaptive evolution to fish are ongoing in P. damselae subsp. piscicida , and are largely mediated by transposable elements, predominantly in chromosome 2, and by plasmids. Finally, we identified two novel potential virulence determinants in P. damselae subsp. piscicida – a chorismate mutase gene, which is ubiquitously retained and co-localized with the AIP56 apoptogenic toxin-encoding gene on the pPHDP10 plasmid, and transfer-messenger RNA gene ssrA located on the main chromosome, homologous to a critical-to-virulence determinant in Yersinia pseudotuberculosis . Our study describes, to our knowledge, the only fully closed and manually curated genomes of P. damselae subsp. piscicida available to date, offering new insights into this important fish pathogen and its evolution. Microbiology Society 2021-04-22 /pmc/articles/PMC8208687/ /pubmed/33885359 http://dx.doi.org/10.1099/mgen.0.000562 Text en © 2021 The Authors https://creativecommons.org/licenses/by-nc/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution NonCommercial License.
spellingShingle Research Articles
Baseggio, Laura
Rudenko, Oleksandra
Buller, Nicky
Landos, Matt
Englestädter, Jan
Barnes, Andrew C.
Complete, closed and curated genome sequences of Photobacterium damselae subsp. piscicida isolates from Australia indicate mobilome-driven localized evolution and novel pathogenicity determinants
title Complete, closed and curated genome sequences of Photobacterium damselae subsp. piscicida isolates from Australia indicate mobilome-driven localized evolution and novel pathogenicity determinants
title_full Complete, closed and curated genome sequences of Photobacterium damselae subsp. piscicida isolates from Australia indicate mobilome-driven localized evolution and novel pathogenicity determinants
title_fullStr Complete, closed and curated genome sequences of Photobacterium damselae subsp. piscicida isolates from Australia indicate mobilome-driven localized evolution and novel pathogenicity determinants
title_full_unstemmed Complete, closed and curated genome sequences of Photobacterium damselae subsp. piscicida isolates from Australia indicate mobilome-driven localized evolution and novel pathogenicity determinants
title_short Complete, closed and curated genome sequences of Photobacterium damselae subsp. piscicida isolates from Australia indicate mobilome-driven localized evolution and novel pathogenicity determinants
title_sort complete, closed and curated genome sequences of photobacterium damselae subsp. piscicida isolates from australia indicate mobilome-driven localized evolution and novel pathogenicity determinants
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8208687/
https://www.ncbi.nlm.nih.gov/pubmed/33885359
http://dx.doi.org/10.1099/mgen.0.000562
work_keys_str_mv AT baseggiolaura completeclosedandcuratedgenomesequencesofphotobacteriumdamselaesubsppiscicidaisolatesfromaustraliaindicatemobilomedrivenlocalizedevolutionandnovelpathogenicitydeterminants
AT rudenkooleksandra completeclosedandcuratedgenomesequencesofphotobacteriumdamselaesubsppiscicidaisolatesfromaustraliaindicatemobilomedrivenlocalizedevolutionandnovelpathogenicitydeterminants
AT bullernicky completeclosedandcuratedgenomesequencesofphotobacteriumdamselaesubsppiscicidaisolatesfromaustraliaindicatemobilomedrivenlocalizedevolutionandnovelpathogenicitydeterminants
AT landosmatt completeclosedandcuratedgenomesequencesofphotobacteriumdamselaesubsppiscicidaisolatesfromaustraliaindicatemobilomedrivenlocalizedevolutionandnovelpathogenicitydeterminants
AT englestadterjan completeclosedandcuratedgenomesequencesofphotobacteriumdamselaesubsppiscicidaisolatesfromaustraliaindicatemobilomedrivenlocalizedevolutionandnovelpathogenicitydeterminants
AT barnesandrewc completeclosedandcuratedgenomesequencesofphotobacteriumdamselaesubsppiscicidaisolatesfromaustraliaindicatemobilomedrivenlocalizedevolutionandnovelpathogenicitydeterminants