Cargando…

Toward the use of neural networks for influenza prediction at multiple spatial resolutions

Mitigating the effects of disease outbreaks with timely and effective interventions requires accurate real-time surveillance and forecasting of disease activity, but traditional health care–based surveillance systems are limited by inherent reporting delays. Machine learning methods have the potenti...

Descripción completa

Detalles Bibliográficos
Autores principales: Aiken, Emily L., Nguyen, Andre T., Viboud, Cecile, Santillana, Mauricio
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8208709/
https://www.ncbi.nlm.nih.gov/pubmed/34134985
http://dx.doi.org/10.1126/sciadv.abb1237
Descripción
Sumario:Mitigating the effects of disease outbreaks with timely and effective interventions requires accurate real-time surveillance and forecasting of disease activity, but traditional health care–based surveillance systems are limited by inherent reporting delays. Machine learning methods have the potential to fill this temporal “data gap,” but work to date in this area has focused on relatively simple methods and coarse geographic resolutions (state level and above). We evaluate the predictive performance of a gated recurrent unit neural network approach in comparison with baseline machine learning methods for estimating influenza activity in the United States at the state and city levels and experiment with the inclusion of real-time Internet search data. We find that the neural network approach improves upon baseline models for long time horizons of prediction but is not improved by real-time internet search data. We conduct a thorough analysis of feature importances in all considered models for interpretability purposes.