Cargando…
Toward the use of neural networks for influenza prediction at multiple spatial resolutions
Mitigating the effects of disease outbreaks with timely and effective interventions requires accurate real-time surveillance and forecasting of disease activity, but traditional health care–based surveillance systems are limited by inherent reporting delays. Machine learning methods have the potenti...
Autores principales: | Aiken, Emily L., Nguyen, Andre T., Viboud, Cecile, Santillana, Mauricio |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8208709/ https://www.ncbi.nlm.nih.gov/pubmed/34134985 http://dx.doi.org/10.1126/sciadv.abb1237 |
Ejemplares similares
-
Real-time estimation of disease activity in emerging outbreaks using internet search information
por: Aiken, Emily L., et al.
Publicado: (2020) -
Comparison of crowd-sourced, electronic health records based, and traditional health-care based influenza-tracking systems at multiple spatial resolutions in the United States of America
por: Baltrusaitis, Kristin, et al.
Publicado: (2018) -
Spatial-temporal excess mortality patterns of the 1918–1919 influenza pandemic in Spain
por: Chowell, Gerardo, et al.
Publicado: (2014) -
Human mobility and the spatial transmission of influenza in the United States
por: Charu, Vivek, et al.
Publicado: (2017) -
Spatial Transmission of 2009 Pandemic Influenza in the US
por: Gog, Julia R., et al.
Publicado: (2014)