Cargando…

Associations of maternal and infant metabolomes with immune maturation and allergy development at 12 months in the Swedish NICE-cohort

Allergic diseases are the most common chronic diseases in childrenin the Western world, but little is know about what factors influence immune maturation and allergy development. We therefore aimed to associate infant and maternal metabolomes to T- and B-cell subpopulations and allergy diagnosis. We...

Descripción completa

Detalles Bibliográficos
Autores principales: Hartvigsson, Olle, Barman, Malin, Rabe, Hardis, Sandin, Anna, Wold, Agnes E., Brunius, Carl, Sandberg, Ann-Sofie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8209090/
https://www.ncbi.nlm.nih.gov/pubmed/34135462
http://dx.doi.org/10.1038/s41598-021-92239-3
Descripción
Sumario:Allergic diseases are the most common chronic diseases in childrenin the Western world, but little is know about what factors influence immune maturation and allergy development. We therefore aimed to associate infant and maternal metabolomes to T- and B-cell subpopulations and allergy diagnosis. We performed liquid chromatography-mass spectrometry based untargeted metabolomics on blood plasma from mothers (third trimester, n = 605; delivery, n = 558) and from the umbilical cord (n = 366). The measured metabolomes were associated to T- and B-cell subpopulations up to 4 months after delivery and to doctor´s diagnosed eczema, food allergy and asthma at one year of age using random forest analysis. Maternal and cord plasma at delivery could predict the number of CD24(+)CD38(low) memory B-cells (p = 0.033, n = 26 and p = 0.009, n = 22), but future allergy status could not be distinguished from any of the three measured metabolomes. Replication of previous literature findings showed hypoxanthine to be upregulated in the umbilical cord of children with subsequent asthma. This exploratory study suggests foetal immune programming occuring during pregnancy as the metabolomic profiles of mothers and infants at delivery related to infants’ B-cell maturation.