Cargando…
Systematic misestimation of machine learning performance in neuroimaging studies of depression
We currently observe a disconcerting phenomenon in machine learning studies in psychiatry: While we would expect larger samples to yield better results due to the availability of more data, larger machine learning studies consistently show much weaker performance than the numerous small-scale studie...
Autores principales: | Flint, Claas, Cearns, Micah, Opel, Nils, Redlich, Ronny, Mehler, David M. A., Emden, Daniel, Winter, Nils R., Leenings, Ramona, Eickhoff, Simon B., Kircher, Tilo, Krug, Axel, Nenadic, Igor, Arolt, Volker, Clark, Scott, Baune, Bernhard T., Jiang, Xiaoyi, Dannlowski, Udo, Hahn, Tim |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8209109/ https://www.ncbi.nlm.nih.gov/pubmed/33958703 http://dx.doi.org/10.1038/s41386-021-01020-7 |
Ejemplares similares
-
Biological sex classification with structural MRI data shows increased misclassification in transgender women
por: Flint, Claas, et al.
Publicado: (2020) -
Correction to: Biological sex classification with structural MRI data shows increased misclassification in transgender women
por: Flint, Claas, et al.
Publicado: (2021) -
From multivariate methods to an AI ecosystem
por: Winter, Nils R., et al.
Publicado: (2021) -
Predicting rehospitalization within 2 years of initial patient admission for a major depressive episode: a multimodal machine learning approach
por: Cearns, Micah, et al.
Publicado: (2019) -
Smartphone-Based Self-Reports of Depressive Symptoms Using the Remote Monitoring Application in Psychiatry (ReMAP): Interformat Validation Study
por: Goltermann, Janik, et al.
Publicado: (2021)