Cargando…

Impact of underground storm drain systems on larval ecology of Culex and Aedes species in urban environments of Southern California

An extensive network of storm water conveyance systems in urban areas, often referred to as the “underground storm drain system” (USDS), serves as significant production habitats for mosquitoes. Knowledge of whether USDS habitats are suitable for newly introduced dengue vectors Aedes aegypti and Ae....

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Xiaoming, Zhou, Guofa, Zhong, Daibin, Li, Yiji, Octaviani, Stacia, Shin, Andrew T., Morgan, Timothy, Nguyen, Kiet, Bastear, Jessica, Doyle, Melissa, Cummings, Robert F., Yan, Guiyun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8209202/
https://www.ncbi.nlm.nih.gov/pubmed/34135430
http://dx.doi.org/10.1038/s41598-021-92190-3
Descripción
Sumario:An extensive network of storm water conveyance systems in urban areas, often referred to as the “underground storm drain system” (USDS), serves as significant production habitats for mosquitoes. Knowledge of whether USDS habitats are suitable for newly introduced dengue vectors Aedes aegypti and Ae. albopictus will help guide surveillance and control efforts. To determine whether the USDS functions as a suitable larval habitat for Culex, Ae. aegypti and Ae. albopictus in southern California, we examined mosquito habitat utilization and larval survivorship using laboratory microcosm studies. The data showed that USDS constituted 4.1% of sampled larval habitats for Ae. aegypti and Ae. albopictus, and 22.0% for Cx. quinquefasciatus. Furthermore, USDS water collected in the summer completely inhibited Aedes larval development, but yielded a 15.0% pupation rate for Cx. quinquefasciatus. Food supplementation in the microcosms suggests that nutrient deficiency, toxins and other factors in the USDS water led to low success or complete failure of larval development. These results suggest that USDS habitats are currently not major productive larval habitats for Aedes mosquitoes in southern California. Our findings prompt inclusion of assessments of pupal productivity in USDS habitats and adult mosquito resting sites in the mosquito surveillance program.