Cargando…
Continuous(ly) missing outcome data in network meta-analysis: A one-stage pattern-mixture model approach
Appropriate handling of aggregate missing outcome data is necessary to minimise bias in the conclusions of systematic reviews. The two-stage pattern-mixture model has been already proposed to address aggregate missing continuous outcome data. While this approach is more proper compared with the excl...
Autores principales: | Spineli, Loukia M, Kalyvas, Chrysostomos, Papadimitropoulou, Katerina |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8209314/ https://www.ncbi.nlm.nih.gov/pubmed/33406990 http://dx.doi.org/10.1177/0962280220983544 |
Ejemplares similares
-
Pattern-mixture model in network meta-analysis of binary missing outcome data: one-stage or two-stage approach?
por: Spineli, Loukia M., et al.
Publicado: (2021) -
How robust are findings of pairwise and network meta-analysis in the presence of missing participant outcome data?
por: Spineli, Loukia M., et al.
Publicado: (2021) -
Comparison of exclusion, imputation and modelling of missing binary outcome data in frequentist network meta-analysis
por: Spineli, Loukia M., et al.
Publicado: (2020) -
Participants' outcomes gone missing within a network of interventions: Bayesian modeling strategies
por: Spineli, Loukia M., et al.
Publicado: (2019) -
An empirical comparison of Bayesian modelling strategies for missing binary outcome data in network meta-analysis
por: Spineli, Loukia M.
Publicado: (2019)