Cargando…
The role of dendritic cells derived osteoclasts in bone destruction diseases
The bone is previously considered as a dominant organ involved in the processes of locomotion. However, in the past two decades, a large number of studies have suggested that the skeletal system closely coordinated with the immune system so as to result in the emerging area of ‘osteoimmunology’. In...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Chongqing Medical University
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8209356/ https://www.ncbi.nlm.nih.gov/pubmed/34179305 http://dx.doi.org/10.1016/j.gendis.2020.03.009 |
Sumario: | The bone is previously considered as a dominant organ involved in the processes of locomotion. However, in the past two decades, a large number of studies have suggested that the skeletal system closely coordinated with the immune system so as to result in the emerging area of ‘osteoimmunology’. In the evolution of many kinds of bone destruction-related diseases, osteoclasts could differentiate from dendritic cells, which contributed to increased expression of osteoclast-related membrane receptors and relatively higher activity of bone destruction, inducing severe bone destruction under inflammatory conditions. Numerous factors could influence the interaction between osteoclasts and dendritic cells, contributing to the pathogenesis of several bone diseases in the context of inflammation, including both immunocytes and a large number of cytokines. In addition, the products of osteoclasts released from bone destruction area serve as important signals for the differentiation and activation of immature dendritic cells. Therefore, the border between the dendritic cell-related immune response and osteoclast-related bone destruction has gradually unravelled. Dendritic cells and osteoclasts cooperate with each other to mediate bone destruction and bone remodelling under inflammatory conditions. In this review, we will pay attention to the interactions between dendritic cells and osteoclasts in physiological and pathological conditions to further understand the skeletal system and identify potential new therapeutic targets for the future by summarizing their significant roles and molecular mechanisms in bone destruction. |
---|