Cargando…
On the Use of a Multimodal Optimizer for Fitting Neuron Models. Application to the Cerebellar Granule Cell
This article extends a recent methodological workflow for creating realistic and computationally efficient neuron models whilst capturing essential aspects of single-neuron dynamics. We overcome the intrinsic limitations of the extant optimization methods by proposing an alternative optimization com...
Autores principales: | Marín, Milagros, Cruz, Nicolás C., Ortigosa, Eva M., Sáez-Lara, María J., Garrido, Jesús A., Carrillo, Richard R. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8209370/ https://www.ncbi.nlm.nih.gov/pubmed/34149387 http://dx.doi.org/10.3389/fninf.2021.663797 |
Ejemplares similares
-
Optimization of Efficient Neuron Models With Realistic Firing Dynamics. The Case of the Cerebellar Granule Cell
por: Marín, Milagros, et al.
Publicado: (2020) -
Multimodal sensory integration in single cerebellar granule cells in vivo
por: Ishikawa, Taro, et al.
Publicado: (2015) -
Convergence of pontine and proprioceptive streams onto multimodal cerebellar granule cells
por: Huang, Cheng-Chiu, et al.
Publicado: (2013) -
Black-box and surrogate optimization for tuning spiking neural models of striatum plasticity
por: Cruz, Nicolás C., et al.
Publicado: (2022) -
Single Neuron Optimization as a Basis for Accurate Biophysical Modeling: The Case of Cerebellar Granule Cells
por: Masoli, Stefano, et al.
Publicado: (2017)