Cargando…
Nitrogen-fixing Ability and Nitrogen Fixation-related Genes of Thermophilic Fermentative Bacteria in the Genus Caldicellulosiruptor
Fermentative nitrogen-fixing bacteria have not yet been examined in detail in thermal environments. In the present study, we isolated the thermophilic fermentative bacterium, strain YA01 from a hot spring. This strain grew at temperatures up to 78°C. A phylogenetic analysis based on its 16S rRNA gen...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Japanese Society of Microbial Ecology / Japanese Society of Soil Microbiology / Taiwan Society of Microbial Ecology / Japanese Society of Plant Microbe Interactions / Japanese Society for Extremophiles
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8209448/ https://www.ncbi.nlm.nih.gov/pubmed/34108360 http://dx.doi.org/10.1264/jsme2.ME21018 |
_version_ | 1783709130449485824 |
---|---|
author | Chen, Yuxin Nishihara, Arisa Haruta, Shin |
author_facet | Chen, Yuxin Nishihara, Arisa Haruta, Shin |
author_sort | Chen, Yuxin |
collection | PubMed |
description | Fermentative nitrogen-fixing bacteria have not yet been examined in detail in thermal environments. In the present study, we isolated the thermophilic fermentative bacterium, strain YA01 from a hot spring. This strain grew at temperatures up to 78°C. A phylogenetic analysis based on its 16S rRNA gene sequence indicated that strain YA01 belonged to the genus Caldicellulosiruptor, which are fermentative bacteria in the phylum Firmicutes, with 97.7–98.0% sequence identity to its closest relatives. Strain YA01 clearly exhibited N(2)-dependent growth at 70°C. We also confirmed N(2)-dependent growth in the relatives of strain YA01, Caldicellulosiruptor hydrothermalis 108 and Caldicellulosiruptor kronotskyensis 2002. The nitrogenase activities of these three strains were examined using the acetylene reduction assay. Similar activities were detected for all tested strains, and were slightly suppressed by the addition of ammonium. A genome analysis revealed that strain YA01, as well as other Caldicellulosiruptor, possessed a gene set for nitrogen fixation, but lacked the nifN gene, which encodes a nitrogenase iron-molybdenum cofactor biosynthesis protein that is commonly detected in nitrogen-fixing bacteria. The amino acid sequences of nitrogenase encoded by nifH, nifD, and nifK shared 92–98% similarity in Caldicellulosiruptor. A phylogenetic tree of concatenated NifHDK sequences showed that NifHDK of Caldicellulosiruptor was in the deepest clade. To the best of our knowledge, this is the first study to demonstrate the nitrogen-fixing ability of fermentative bacteria at 70°C. Caldicellulosiruptor may have retained an ancient nitrogen-fixing enzyme system. |
format | Online Article Text |
id | pubmed-8209448 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Japanese Society of Microbial Ecology / Japanese Society of Soil Microbiology / Taiwan Society of Microbial Ecology / Japanese Society of Plant Microbe Interactions / Japanese Society for Extremophiles |
record_format | MEDLINE/PubMed |
spelling | pubmed-82094482021-06-30 Nitrogen-fixing Ability and Nitrogen Fixation-related Genes of Thermophilic Fermentative Bacteria in the Genus Caldicellulosiruptor Chen, Yuxin Nishihara, Arisa Haruta, Shin Microbes Environ Regular Paper Fermentative nitrogen-fixing bacteria have not yet been examined in detail in thermal environments. In the present study, we isolated the thermophilic fermentative bacterium, strain YA01 from a hot spring. This strain grew at temperatures up to 78°C. A phylogenetic analysis based on its 16S rRNA gene sequence indicated that strain YA01 belonged to the genus Caldicellulosiruptor, which are fermentative bacteria in the phylum Firmicutes, with 97.7–98.0% sequence identity to its closest relatives. Strain YA01 clearly exhibited N(2)-dependent growth at 70°C. We also confirmed N(2)-dependent growth in the relatives of strain YA01, Caldicellulosiruptor hydrothermalis 108 and Caldicellulosiruptor kronotskyensis 2002. The nitrogenase activities of these three strains were examined using the acetylene reduction assay. Similar activities were detected for all tested strains, and were slightly suppressed by the addition of ammonium. A genome analysis revealed that strain YA01, as well as other Caldicellulosiruptor, possessed a gene set for nitrogen fixation, but lacked the nifN gene, which encodes a nitrogenase iron-molybdenum cofactor biosynthesis protein that is commonly detected in nitrogen-fixing bacteria. The amino acid sequences of nitrogenase encoded by nifH, nifD, and nifK shared 92–98% similarity in Caldicellulosiruptor. A phylogenetic tree of concatenated NifHDK sequences showed that NifHDK of Caldicellulosiruptor was in the deepest clade. To the best of our knowledge, this is the first study to demonstrate the nitrogen-fixing ability of fermentative bacteria at 70°C. Caldicellulosiruptor may have retained an ancient nitrogen-fixing enzyme system. Japanese Society of Microbial Ecology / Japanese Society of Soil Microbiology / Taiwan Society of Microbial Ecology / Japanese Society of Plant Microbe Interactions / Japanese Society for Extremophiles 2021 2021-06-10 /pmc/articles/PMC8209448/ /pubmed/34108360 http://dx.doi.org/10.1264/jsme2.ME21018 Text en 2021 by Japanese Society of Microbial Ecology / Japanese Society of Soil Microbiology / Taiwan Society of Microbial Ecology / Japanese Society of Plant Microbe Interactions / Japanese Society for Extremophiles. https://creativecommons.org/licenses/by/3.0/This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Regular Paper Chen, Yuxin Nishihara, Arisa Haruta, Shin Nitrogen-fixing Ability and Nitrogen Fixation-related Genes of Thermophilic Fermentative Bacteria in the Genus Caldicellulosiruptor |
title | Nitrogen-fixing Ability and Nitrogen Fixation-related Genes of Thermophilic Fermentative Bacteria in the Genus Caldicellulosiruptor |
title_full | Nitrogen-fixing Ability and Nitrogen Fixation-related Genes of Thermophilic Fermentative Bacteria in the Genus Caldicellulosiruptor |
title_fullStr | Nitrogen-fixing Ability and Nitrogen Fixation-related Genes of Thermophilic Fermentative Bacteria in the Genus Caldicellulosiruptor |
title_full_unstemmed | Nitrogen-fixing Ability and Nitrogen Fixation-related Genes of Thermophilic Fermentative Bacteria in the Genus Caldicellulosiruptor |
title_short | Nitrogen-fixing Ability and Nitrogen Fixation-related Genes of Thermophilic Fermentative Bacteria in the Genus Caldicellulosiruptor |
title_sort | nitrogen-fixing ability and nitrogen fixation-related genes of thermophilic fermentative bacteria in the genus caldicellulosiruptor |
topic | Regular Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8209448/ https://www.ncbi.nlm.nih.gov/pubmed/34108360 http://dx.doi.org/10.1264/jsme2.ME21018 |
work_keys_str_mv | AT chenyuxin nitrogenfixingabilityandnitrogenfixationrelatedgenesofthermophilicfermentativebacteriainthegenuscaldicellulosiruptor AT nishiharaarisa nitrogenfixingabilityandnitrogenfixationrelatedgenesofthermophilicfermentativebacteriainthegenuscaldicellulosiruptor AT harutashin nitrogenfixingabilityandnitrogenfixationrelatedgenesofthermophilicfermentativebacteriainthegenuscaldicellulosiruptor |