Cargando…
A World Full of Stereotypes? Further Investigation on Origin and Gender Bias in Multi-Lingual Word Embeddings
Publicly available off-the-shelf word embeddings that are often used in productive applications for natural language processing have been proven to be biased. We have previously shown that this bias can come in different forms, depending on the language and the cultural context. In this work, we ext...
Autores principales: | Kurpicz-Briki, Mascha, Leoni, Tomaso |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8209512/ https://www.ncbi.nlm.nih.gov/pubmed/34151257 http://dx.doi.org/10.3389/fdata.2021.625290 |
Ejemplares similares
-
BurnoutEnsemble: Augmented Intelligence to Detect Indications for Burnout in Clinical Psychology
por: Merhbene, Ghofrane, et al.
Publicado: (2022) -
Unsupervised Word Embedding Learning by Incorporating Local and Global Contexts
por: Meng, Yu, et al.
Publicado: (2020) -
Search Engine Gender Bias
por: Wijnhoven, Fons, et al.
Publicado: (2021) -
Balancing Gender Bias in Job Advertisements With Text-Level Bias Mitigation
por: Hu, Shenggang, et al.
Publicado: (2022) -
A machine learning approach to quantify gender bias in collaboration practices of mathematicians
por: Steinfeldt, Christian, et al.
Publicado: (2023)