Cargando…
Unsupervised Machine Learning for Identifying Challenging Behavior Profiles to Explore Cluster-Based Treatment Efficacy in Children With Autism Spectrum Disorder: Retrospective Data Analysis Study
BACKGROUND: Challenging behaviors are prevalent among individuals with autism spectrum disorder; however, research exploring the impact of challenging behaviors on treatment response is lacking. OBJECTIVE: The purpose of this study was to identify types of autism spectrum disorder based on engagemen...
Autores principales: | Gardner-Hoag, Julie, Novack, Marlena, Parlett-Pelleriti, Chelsea, Stevens, Elizabeth, Dixon, Dennis, Linstead, Erik |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8209527/ https://www.ncbi.nlm.nih.gov/pubmed/34076577 http://dx.doi.org/10.2196/27793 |
Ejemplares similares
-
Exploring Age-Related Metamemory Differences using Modified Brier Scores and Hierarchical Clustering
por: Parlett-Pelleriti, Chelsea, et al.
Publicado: (2019) -
An evaluation of the effects of intensity and duration on outcomes across treatment domains for children with autism spectrum disorder
por: Linstead, E, et al.
Publicado: (2017) -
Evaluation of an Immersive Virtual Reality Safety Training Used to Teach Pedestrian Skills to Children With Autism Spectrum Disorder
por: Dixon, Dennis R., et al.
Publicado: (2019) -
Effectiveness of Telehealth Direct Therapy for Individuals with Autism Spectrum Disorder
por: Nohelty, Karen, et al.
Publicado: (2021) -
Commentary – Autism Spectrum Disorder: Spectrum or Cluster?
por: Pruett, John R., et al.
Publicado: (2016)