Cargando…
Tests for publication bias are unreliable in case of heteroscedasticity
Regression based methods for the detection of publication bias in meta-analysis have been extensively evaluated in literature. When dealing with continuous outcomes, specific hidden factors (e.g., heteroscedasticity) may interfere with the test statistics. In this paper we investigate the influence...
Autores principales: | Almalik, Osama, Zhan, Zhuozhao, van den Heuvel, Edwin R. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8209747/ https://www.ncbi.nlm.nih.gov/pubmed/34179565 http://dx.doi.org/10.1016/j.conctc.2021.100781 |
Ejemplares similares
-
Jointly pooling aggregated effect sizes and their standard errors from studies with continuous clinical outcomes
por: Almalik, Osama, et al.
Publicado: (2022) -
Uncertainty of Measurement and Heteroscedasticity
por: Fuentes-Arderiu, Xavier, et al.
Publicado: (2003) -
Comparison of analysis methods and design choices for treatment-by-period interaction in unidirectional switch designs: a simulation study
por: Zhan, Zhuozhao, et al.
Publicado: (2022) -
Evidence of misuse of nonparametric tests in the presence of heteroscedasticity within obesity research
por: Kroeger, Cynthia M, et al.
Publicado: (2021) -
How did governmental interventions affect the spread of COVID-19 in European countries?
por: Post, Richard A. J., et al.
Publicado: (2021)