Cargando…

Discerning the Metal Doping Effect on Surface Redox and Acidic Properties in a MoVTeNbO(x) for Propa(e)ne Oxidation

[Image: see text] Adding a small quantity of K or Bi to a MoVTeNbO(x) via impregnation with inorganic solutions modifies its surface acid and redox properties and its catalytic performance in propa(e)ne partial oxidation to acrylic acid (AA) without detriment to its pristine crystalline structure. B...

Descripción completa

Detalles Bibliográficos
Autores principales: Quintana-Solórzano, Roberto, Mejía-Centeno, Isidro, Armendáriz-Herrera, Hector, Ramírez-Salgado, Joel, Rodríguez-Hernandez, Andrea, Guzmán-Castillo, Maria de Lourdes, Lopez Nieto, Jose M., Valente, Jaime S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2021
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8210400/
https://www.ncbi.nlm.nih.gov/pubmed/34151107
http://dx.doi.org/10.1021/acsomega.1c01591
_version_ 1783709303056629760
author Quintana-Solórzano, Roberto
Mejía-Centeno, Isidro
Armendáriz-Herrera, Hector
Ramírez-Salgado, Joel
Rodríguez-Hernandez, Andrea
Guzmán-Castillo, Maria de Lourdes
Lopez Nieto, Jose M.
Valente, Jaime S.
author_facet Quintana-Solórzano, Roberto
Mejía-Centeno, Isidro
Armendáriz-Herrera, Hector
Ramírez-Salgado, Joel
Rodríguez-Hernandez, Andrea
Guzmán-Castillo, Maria de Lourdes
Lopez Nieto, Jose M.
Valente, Jaime S.
author_sort Quintana-Solórzano, Roberto
collection PubMed
description [Image: see text] Adding a small quantity of K or Bi to a MoVTeNbO(x) via impregnation with inorganic solutions modifies its surface acid and redox properties and its catalytic performance in propa(e)ne partial oxidation to acrylic acid (AA) without detriment to its pristine crystalline structure. Bi-doping encourages propane oxydehydrogenation to propene, thus enlarging the net production rate of AA up to 35% more. The easier propane activation/higher AA production over the Bi-doped catalyst is ascribed to its higher content of surface V leading to a larger amount of total V(5+) species, the isolation site effect of NbO(x) species on V, and its higher Lewis acidity. K-doping does not affect propane oxydehydrogenation to propene but mainly acts over propene once formed, also increasing AA to a similar extent as Bi-doping. Although K-doping lowers propene conversion, it is converted more selectively to acrylic acid owing to its reduced Brønsted acidity and the presence of more Mo(6+) species, thereby favoring propene transformation via the π-allylic species route producing acrylic acid over that forming acetic acid and CO(x) via acetone oxidation and that yielding directly CO(x).
format Online
Article
Text
id pubmed-8210400
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-82104002021-06-17 Discerning the Metal Doping Effect on Surface Redox and Acidic Properties in a MoVTeNbO(x) for Propa(e)ne Oxidation Quintana-Solórzano, Roberto Mejía-Centeno, Isidro Armendáriz-Herrera, Hector Ramírez-Salgado, Joel Rodríguez-Hernandez, Andrea Guzmán-Castillo, Maria de Lourdes Lopez Nieto, Jose M. Valente, Jaime S. ACS Omega [Image: see text] Adding a small quantity of K or Bi to a MoVTeNbO(x) via impregnation with inorganic solutions modifies its surface acid and redox properties and its catalytic performance in propa(e)ne partial oxidation to acrylic acid (AA) without detriment to its pristine crystalline structure. Bi-doping encourages propane oxydehydrogenation to propene, thus enlarging the net production rate of AA up to 35% more. The easier propane activation/higher AA production over the Bi-doped catalyst is ascribed to its higher content of surface V leading to a larger amount of total V(5+) species, the isolation site effect of NbO(x) species on V, and its higher Lewis acidity. K-doping does not affect propane oxydehydrogenation to propene but mainly acts over propene once formed, also increasing AA to a similar extent as Bi-doping. Although K-doping lowers propene conversion, it is converted more selectively to acrylic acid owing to its reduced Brønsted acidity and the presence of more Mo(6+) species, thereby favoring propene transformation via the π-allylic species route producing acrylic acid over that forming acetic acid and CO(x) via acetone oxidation and that yielding directly CO(x). American Chemical Society 2021-06-02 /pmc/articles/PMC8210400/ /pubmed/34151107 http://dx.doi.org/10.1021/acsomega.1c01591 Text en © 2021 The Authors. Published by American Chemical Society Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Quintana-Solórzano, Roberto
Mejía-Centeno, Isidro
Armendáriz-Herrera, Hector
Ramírez-Salgado, Joel
Rodríguez-Hernandez, Andrea
Guzmán-Castillo, Maria de Lourdes
Lopez Nieto, Jose M.
Valente, Jaime S.
Discerning the Metal Doping Effect on Surface Redox and Acidic Properties in a MoVTeNbO(x) for Propa(e)ne Oxidation
title Discerning the Metal Doping Effect on Surface Redox and Acidic Properties in a MoVTeNbO(x) for Propa(e)ne Oxidation
title_full Discerning the Metal Doping Effect on Surface Redox and Acidic Properties in a MoVTeNbO(x) for Propa(e)ne Oxidation
title_fullStr Discerning the Metal Doping Effect on Surface Redox and Acidic Properties in a MoVTeNbO(x) for Propa(e)ne Oxidation
title_full_unstemmed Discerning the Metal Doping Effect on Surface Redox and Acidic Properties in a MoVTeNbO(x) for Propa(e)ne Oxidation
title_short Discerning the Metal Doping Effect on Surface Redox and Acidic Properties in a MoVTeNbO(x) for Propa(e)ne Oxidation
title_sort discerning the metal doping effect on surface redox and acidic properties in a movtenbo(x) for propa(e)ne oxidation
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8210400/
https://www.ncbi.nlm.nih.gov/pubmed/34151107
http://dx.doi.org/10.1021/acsomega.1c01591
work_keys_str_mv AT quintanasolorzanoroberto discerningthemetaldopingeffectonsurfaceredoxandacidicpropertiesinamovtenboxforpropaeneoxidation
AT mejiacentenoisidro discerningthemetaldopingeffectonsurfaceredoxandacidicpropertiesinamovtenboxforpropaeneoxidation
AT armendarizherrerahector discerningthemetaldopingeffectonsurfaceredoxandacidicpropertiesinamovtenboxforpropaeneoxidation
AT ramirezsalgadojoel discerningthemetaldopingeffectonsurfaceredoxandacidicpropertiesinamovtenboxforpropaeneoxidation
AT rodriguezhernandezandrea discerningthemetaldopingeffectonsurfaceredoxandacidicpropertiesinamovtenboxforpropaeneoxidation
AT guzmancastillomariadelourdes discerningthemetaldopingeffectonsurfaceredoxandacidicpropertiesinamovtenboxforpropaeneoxidation
AT lopeznietojosem discerningthemetaldopingeffectonsurfaceredoxandacidicpropertiesinamovtenboxforpropaeneoxidation
AT valentejaimes discerningthemetaldopingeffectonsurfaceredoxandacidicpropertiesinamovtenboxforpropaeneoxidation