Cargando…

Reversible Photoisomerization in Thin Surface Films from Azo-Functionalized Guanosine Derivatives

[Image: see text] Two novel azo-functionalized guanosine derivatives were synthesized, and their photoisomerization process was investigated in molecular monolayers at the air–water interface and in the Langmuir–Blodgett (LB) films on solid substrates. Measurements of surface pressure vs area isothe...

Descripción completa

Detalles Bibliográficos
Autores principales: Ličen, Matjaž, Masiero, Stefano, Pieraccini, Silvia, Drevenšek-Olenik, Irena
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2021
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8210406/
https://www.ncbi.nlm.nih.gov/pubmed/34151120
http://dx.doi.org/10.1021/acsomega.1c01879
Descripción
Sumario:[Image: see text] Two novel azo-functionalized guanosine derivatives were synthesized, and their photoisomerization process was investigated in molecular monolayers at the air–water interface and in the Langmuir–Blodgett (LB) films on solid substrates. Measurements of surface pressure vs area isotherms, surface potential measurements, UV–visible (vis) absorption spectroscopy, Brewster angle microscopy (BAM), and atomic force microscopy (AFM) were performed. Despite not having a typical amphiphilic molecular structure, the derivatives formed stable films on the water surface. They could also undergo repeated photoisomerization in all of the investigated thin-film configurations. The observations suggest that in the films at the air–water interface, the molecules first exhibit a conformational change, and then they reorient to an energetically more favored orientation. In the LB films transferred onto solid substrates, the isomerization process occurs on a similar time scale as in solution. However, the isomerization efficiency is about an order of magnitude lower than that in solution. Our results show that DNA nucleobases functionalized with azobenzene moieties are suitable candidates for the fabrication of photoactive two-dimensional (2D) materials that can provide all beneficial functionalities of DNA-based compounds.