Cargando…
Multi-stage malaria parasite recognition by deep learning
MOTIVATION: Malaria, a mosquito-borne infectious disease affecting humans and other animals, is widespread in tropical and subtropical regions. Microscopy is the most common method for diagnosing the malaria parasite from stained blood smear samples. However, this technique is time consuming and mus...
Autores principales: | Li, Sen, Du, Zeyu, Meng, Xiangjie, Zhang, Yang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8210472/ https://www.ncbi.nlm.nih.gov/pubmed/34137821 http://dx.doi.org/10.1093/gigascience/giab040 |
Ejemplares similares
-
Robust Image Processing Framework for Intelligent Multi-Stage Malaria Parasite Recognition of Thick and Thin Smear Images
por: Aris, Thaqifah Ahmad, et al.
Publicado: (2023) -
Deep Learning Methods in Predicting Gene Expression Levels for the Malaria Parasite
por: Tran, Tuan, et al.
Publicado: (2021) -
MalariaSED: a deep learning framework to decipher the regulatory contributions of noncoding variants in malaria parasites
por: Wang, Chengqi, et al.
Publicado: (2023) -
Using deep learning to identify recent positive selection in malaria parasite sequence data
por: Deelder, Wouter, et al.
Publicado: (2021) -
A knowledge-integrated deep learning framework for cellular image analysis in parasite microbiology
por: Feng, Ruijun, et al.
Publicado: (2023)