Cargando…
A new weighted fuzzy C-means clustering for workload monitoring in cloud datacenter platforms
The rapid growth in virtualization solutions has driven the widespread adoption of cloud computing paradigms among various industries and applications. This has led to a growing need for XaaS solutions and equipment to enable teleworking. To meet this need, cloud operators and datacenters have to ov...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8210524/ https://www.ncbi.nlm.nih.gov/pubmed/34155435 http://dx.doi.org/10.1007/s10586-021-03331-2 |
Sumario: | The rapid growth in virtualization solutions has driven the widespread adoption of cloud computing paradigms among various industries and applications. This has led to a growing need for XaaS solutions and equipment to enable teleworking. To meet this need, cloud operators and datacenters have to overtake several challenges related to continuity, the quality of services provided, data security, and anomaly detection issues. Mainly, anomaly detection methods play a critical role in detecting virtual machines’ abnormal behaviours that can potentially violate service level agreements established with users. Unsupervised machine learning techniques are among the most commonly used technologies for implementing anomaly detection systems. This paper introduces a novel clustering approach for analyzing virtual machine behaviour while running workloads in a system based on resource usage details (such as CPU utilization and downtime events). The proposed algorithm is inspired by the intuitive mechanism of flocking birds in nature to form reasonable clusters. Each starling movement’s direction depends on self-information and information provided by other close starlings during the flight. Analogically, after associating a weight with each data sample to guide the formation of meaningful groups, each data element determines its next position in the feature space based on its current position and surroundings. Based on a realistic dataset and clustering validity indices, the experimental evaluation shows that the new weighted fuzzy c-means algorithm provides interesting results and outperforms the corresponding standard algorithm (weighted fuzzy c-means). |
---|