Cargando…

Closed-loop trans-skull ultrasound hyperthermia leads to improved drug delivery from thermosensitive drugs and promotes changes in vascular transport dynamics in brain tumors

Effective drug delivery in brain tumors remains a major challenge in oncology. Although local hyperthermia and stimuli-responsive delivery systems, such as thermosensitive liposomes, represent promising strategies to locally enhance drug delivery in solid tumors and improve outcomes, their applicati...

Descripción completa

Detalles Bibliográficos
Autores principales: Kim, Chulyong, Guo, Yutong, Velalopoulou, Anastasia, Leisen, Johannes, Motamarry, Anjan, Ramajayam, Krishna, Aryal, Muna, Haemmerich, Dieter, Arvanitis, Costas D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Ivyspring International Publisher 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8210606/
https://www.ncbi.nlm.nih.gov/pubmed/34158850
http://dx.doi.org/10.7150/thno.54630
_version_ 1783709345993719808
author Kim, Chulyong
Guo, Yutong
Velalopoulou, Anastasia
Leisen, Johannes
Motamarry, Anjan
Ramajayam, Krishna
Aryal, Muna
Haemmerich, Dieter
Arvanitis, Costas D.
author_facet Kim, Chulyong
Guo, Yutong
Velalopoulou, Anastasia
Leisen, Johannes
Motamarry, Anjan
Ramajayam, Krishna
Aryal, Muna
Haemmerich, Dieter
Arvanitis, Costas D.
author_sort Kim, Chulyong
collection PubMed
description Effective drug delivery in brain tumors remains a major challenge in oncology. Although local hyperthermia and stimuli-responsive delivery systems, such as thermosensitive liposomes, represent promising strategies to locally enhance drug delivery in solid tumors and improve outcomes, their application in intracranial malignancies remains unexplored. We hypothesized that the combined abilities of closed-loop trans-skull Magnetic Resonance Imaging guided Focused Ultrasound (MRgFUS) hyperthermia with those of thermosensitive drugs can alleviate challenges in drug delivery and improve survival in gliomas. Methods: To conduct our investigations, we first designed a closed loop MR-guided Focused Ultrasound (MRgFUS) system for localized trans-skull hyperthermia (ΔT < 0.5 °C) in rodents and established safety thresholds in healthy mice. To assess the abilities of the developed system and proposed therapeutic strategy for FUS-triggered chemotherapy release we employed thermosensitive liposomal Dox (TSL-Dox) and tested it in two different glioma tumor models (F98 in rats and GL261 in mice). To quantify Dox delivery and changes in the transvascular transport dynamics in the tumor microenvironment we combined fluorescent microscopy, dynamic contrast enhanced MRI (DCE-MRI), and physiologically based pharmacokinetic (PBPK) modeling. Lastly, to assess the therapeutic efficacy of the system and of the proposed therapeutic strategy we performed a survival study in the GL261 glioma bearing mice. Results: The developed closed-loop trans-skull MRgFUS-hyperthermia system that operated at 1.7 MHz, a frequency that maximized the brain (FUS-focus) to skull temperature ratio in mice, was able to attain and maintain the desired focal temperature within a narrow range. Histological evidence (H&E and Nissl) suggests that focal temperature at 41.5 ± 0.5 °C for 10 min is below the threshold for tissue damage. Quantitative analysis of doxorubicin delivery from TSLs with MRgFUS-hyperthermia demonstrated 3.5-fold improvement in cellular uptake in GL261 glioma mouse tumors (p < 0.001) and 5-fold increase in delivery in F98 glioma rat tumors (p < 0.05), as compared to controls (TSL-Dox-only). Moreover, PBPK modeling of drug transport that was calibrated using the experimental data indicated that thermal stress could lead to significant improvement in the transvascular transport (2.3-fold increase in the vessel diffusion coefficient; P < 0.001), in addition to promoting targeted Dox release. Prospective experimental investigations with DCE-MRI during FUS-hyperthermia, supported these findings and provided evidence that moderate thermal stress (≈41 °C for up to 10 min) can promote acute changes in the vascular transport dynamics in the brain tumor microenvironment (K(trans) value for control vs. FUS was 0.0097 and 0.0148 min(-1), respectively; p = 0.026). Crucially, survival analysis demonstrated significant improvement in the survival in the TSL-Dox-FUS group as compared to TSL-Dox-only group (p < 0.05), providing supporting evidence on the therapeutic potential of the proposed strategy. Conclusions: Our investigations demonstrated that spatially controlled thermal stress can be attained and sustained in the mouse brain, using a trans-skull closed-loop MRgFUS system, and used to promote the effective delivery of chemotherapy in gliomas from thermosensitive drugs. This system also allowed us to conduct mechanistic investigations that resulted in the refinement of our understanding on the role of thermal stress in augmenting mass and drug transport in brain tumors. Overall, our study established a new paradigm for effective drug delivery in brain tumors based on closed-loop ultrasound-mediated thermal stress and thermosensitive drugs.
format Online
Article
Text
id pubmed-8210606
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Ivyspring International Publisher
record_format MEDLINE/PubMed
spelling pubmed-82106062021-06-21 Closed-loop trans-skull ultrasound hyperthermia leads to improved drug delivery from thermosensitive drugs and promotes changes in vascular transport dynamics in brain tumors Kim, Chulyong Guo, Yutong Velalopoulou, Anastasia Leisen, Johannes Motamarry, Anjan Ramajayam, Krishna Aryal, Muna Haemmerich, Dieter Arvanitis, Costas D. Theranostics Research Paper Effective drug delivery in brain tumors remains a major challenge in oncology. Although local hyperthermia and stimuli-responsive delivery systems, such as thermosensitive liposomes, represent promising strategies to locally enhance drug delivery in solid tumors and improve outcomes, their application in intracranial malignancies remains unexplored. We hypothesized that the combined abilities of closed-loop trans-skull Magnetic Resonance Imaging guided Focused Ultrasound (MRgFUS) hyperthermia with those of thermosensitive drugs can alleviate challenges in drug delivery and improve survival in gliomas. Methods: To conduct our investigations, we first designed a closed loop MR-guided Focused Ultrasound (MRgFUS) system for localized trans-skull hyperthermia (ΔT < 0.5 °C) in rodents and established safety thresholds in healthy mice. To assess the abilities of the developed system and proposed therapeutic strategy for FUS-triggered chemotherapy release we employed thermosensitive liposomal Dox (TSL-Dox) and tested it in two different glioma tumor models (F98 in rats and GL261 in mice). To quantify Dox delivery and changes in the transvascular transport dynamics in the tumor microenvironment we combined fluorescent microscopy, dynamic contrast enhanced MRI (DCE-MRI), and physiologically based pharmacokinetic (PBPK) modeling. Lastly, to assess the therapeutic efficacy of the system and of the proposed therapeutic strategy we performed a survival study in the GL261 glioma bearing mice. Results: The developed closed-loop trans-skull MRgFUS-hyperthermia system that operated at 1.7 MHz, a frequency that maximized the brain (FUS-focus) to skull temperature ratio in mice, was able to attain and maintain the desired focal temperature within a narrow range. Histological evidence (H&E and Nissl) suggests that focal temperature at 41.5 ± 0.5 °C for 10 min is below the threshold for tissue damage. Quantitative analysis of doxorubicin delivery from TSLs with MRgFUS-hyperthermia demonstrated 3.5-fold improvement in cellular uptake in GL261 glioma mouse tumors (p < 0.001) and 5-fold increase in delivery in F98 glioma rat tumors (p < 0.05), as compared to controls (TSL-Dox-only). Moreover, PBPK modeling of drug transport that was calibrated using the experimental data indicated that thermal stress could lead to significant improvement in the transvascular transport (2.3-fold increase in the vessel diffusion coefficient; P < 0.001), in addition to promoting targeted Dox release. Prospective experimental investigations with DCE-MRI during FUS-hyperthermia, supported these findings and provided evidence that moderate thermal stress (≈41 °C for up to 10 min) can promote acute changes in the vascular transport dynamics in the brain tumor microenvironment (K(trans) value for control vs. FUS was 0.0097 and 0.0148 min(-1), respectively; p = 0.026). Crucially, survival analysis demonstrated significant improvement in the survival in the TSL-Dox-FUS group as compared to TSL-Dox-only group (p < 0.05), providing supporting evidence on the therapeutic potential of the proposed strategy. Conclusions: Our investigations demonstrated that spatially controlled thermal stress can be attained and sustained in the mouse brain, using a trans-skull closed-loop MRgFUS system, and used to promote the effective delivery of chemotherapy in gliomas from thermosensitive drugs. This system also allowed us to conduct mechanistic investigations that resulted in the refinement of our understanding on the role of thermal stress in augmenting mass and drug transport in brain tumors. Overall, our study established a new paradigm for effective drug delivery in brain tumors based on closed-loop ultrasound-mediated thermal stress and thermosensitive drugs. Ivyspring International Publisher 2021-05-24 /pmc/articles/PMC8210606/ /pubmed/34158850 http://dx.doi.org/10.7150/thno.54630 Text en © The author(s) https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/). See http://ivyspring.com/terms for full terms and conditions.
spellingShingle Research Paper
Kim, Chulyong
Guo, Yutong
Velalopoulou, Anastasia
Leisen, Johannes
Motamarry, Anjan
Ramajayam, Krishna
Aryal, Muna
Haemmerich, Dieter
Arvanitis, Costas D.
Closed-loop trans-skull ultrasound hyperthermia leads to improved drug delivery from thermosensitive drugs and promotes changes in vascular transport dynamics in brain tumors
title Closed-loop trans-skull ultrasound hyperthermia leads to improved drug delivery from thermosensitive drugs and promotes changes in vascular transport dynamics in brain tumors
title_full Closed-loop trans-skull ultrasound hyperthermia leads to improved drug delivery from thermosensitive drugs and promotes changes in vascular transport dynamics in brain tumors
title_fullStr Closed-loop trans-skull ultrasound hyperthermia leads to improved drug delivery from thermosensitive drugs and promotes changes in vascular transport dynamics in brain tumors
title_full_unstemmed Closed-loop trans-skull ultrasound hyperthermia leads to improved drug delivery from thermosensitive drugs and promotes changes in vascular transport dynamics in brain tumors
title_short Closed-loop trans-skull ultrasound hyperthermia leads to improved drug delivery from thermosensitive drugs and promotes changes in vascular transport dynamics in brain tumors
title_sort closed-loop trans-skull ultrasound hyperthermia leads to improved drug delivery from thermosensitive drugs and promotes changes in vascular transport dynamics in brain tumors
topic Research Paper
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8210606/
https://www.ncbi.nlm.nih.gov/pubmed/34158850
http://dx.doi.org/10.7150/thno.54630
work_keys_str_mv AT kimchulyong closedlooptransskullultrasoundhyperthermialeadstoimproveddrugdeliveryfromthermosensitivedrugsandpromoteschangesinvasculartransportdynamicsinbraintumors
AT guoyutong closedlooptransskullultrasoundhyperthermialeadstoimproveddrugdeliveryfromthermosensitivedrugsandpromoteschangesinvasculartransportdynamicsinbraintumors
AT velalopoulouanastasia closedlooptransskullultrasoundhyperthermialeadstoimproveddrugdeliveryfromthermosensitivedrugsandpromoteschangesinvasculartransportdynamicsinbraintumors
AT leisenjohannes closedlooptransskullultrasoundhyperthermialeadstoimproveddrugdeliveryfromthermosensitivedrugsandpromoteschangesinvasculartransportdynamicsinbraintumors
AT motamarryanjan closedlooptransskullultrasoundhyperthermialeadstoimproveddrugdeliveryfromthermosensitivedrugsandpromoteschangesinvasculartransportdynamicsinbraintumors
AT ramajayamkrishna closedlooptransskullultrasoundhyperthermialeadstoimproveddrugdeliveryfromthermosensitivedrugsandpromoteschangesinvasculartransportdynamicsinbraintumors
AT aryalmuna closedlooptransskullultrasoundhyperthermialeadstoimproveddrugdeliveryfromthermosensitivedrugsandpromoteschangesinvasculartransportdynamicsinbraintumors
AT haemmerichdieter closedlooptransskullultrasoundhyperthermialeadstoimproveddrugdeliveryfromthermosensitivedrugsandpromoteschangesinvasculartransportdynamicsinbraintumors
AT arvanitiscostasd closedlooptransskullultrasoundhyperthermialeadstoimproveddrugdeliveryfromthermosensitivedrugsandpromoteschangesinvasculartransportdynamicsinbraintumors