Cargando…

Statistical parametric mapping of biomechanical one-dimensional data with Bayesian inference

Recent developments in Statistical Parametric Mapping (SPM) for continuum data (e.g. kinematic time series) have been adopted by the biomechanics research community with great interest. The Python/MATLAB package spm1d developed by T. Pataky has introduced SPM into the biomechanical literature, adapt...

Descripción completa

Detalles Bibliográficos
Autores principales: Serrien, Ben, Goossens, Maggy, Baeyens, Jean-Pierre
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Taylor & Francis 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8211129/
https://www.ncbi.nlm.nih.gov/pubmed/34042004
http://dx.doi.org/10.1080/23335432.2019.1597643
Descripción
Sumario:Recent developments in Statistical Parametric Mapping (SPM) for continuum data (e.g. kinematic time series) have been adopted by the biomechanics research community with great interest. The Python/MATLAB package spm1d developed by T. Pataky has introduced SPM into the biomechanical literature, adapted originally from neuroimaging. The package already allows many of the statistical analyses common in biomechanics from a frequentist perspective. In this paper, we propose an application of Bayesian analogs of SPM based on Bayes factors and posterior probability with default priors using the BayesFactor package in R. Results are provided for two typical designs (two-sample and paired sample t-tests) and compared to classical SPM results, but more complex standard designs are possible in both classical and Bayesian frameworks. The advantages of Bayesian analyses in general and specifically for SPM are discussed. Scripts of the analyses are available as supplementary materials.