Cargando…
A mutual information based R-vine copula strategy to estimate VaR in high frequency stock market data
In this paper, we explore mutual information based stock networks to build regular vine copula structure on high frequency log returns of stocks and use it for the estimation of Value at Risk (VaR) of a portfolio of stocks. Our model is a data driven model that learns from a high frequency time seri...
Autores principales: | Sharma, Charu, Sahni, Niteesh |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8211166/ https://www.ncbi.nlm.nih.gov/pubmed/34138970 http://dx.doi.org/10.1371/journal.pone.0253307 |
Ejemplares similares
-
Modeling risk dependence and portfolio VaR forecast through vine copula for cryptocurrencies
por: Syuhada, Khreshna, et al.
Publicado: (2020) -
Dependence and spillover among oil market, China's stock market and exchange rate: new evidence from the Vine-Copula-CoVaR and VAR-BEKK-GARCH frameworks
por: Zeng, Hongjun, et al.
Publicado: (2022) -
Stock market returns and oil price shocks: A CoVaR analysis based on dynamic vine copula models
por: Kielmann, Julia, et al.
Publicado: (2021) -
Analyzing dependent data with vine copulas: a practical guide with R
por: Czado, Claudia
Publicado: (2019) -
Mutual information based stock networks and portfolio selection for intraday traders using high frequency data: An Indian market case study
por: Sharma, Charu, et al.
Publicado: (2019)