Cargando…

Examination of National Basketball Association (NBA) team values based on dynamic linear mixed models

In the last decade, NBA has grown into a billion-dollar industry where technology and advanced game plans play an essential role. Investors are interested in research examining the factors that can affect the team value. The aim of this research is to investigate the factors that affect the NBA team...

Descripción completa

Detalles Bibliográficos
Autor principal: Ulas, Efehan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8211228/
https://www.ncbi.nlm.nih.gov/pubmed/34138919
http://dx.doi.org/10.1371/journal.pone.0253179
_version_ 1783709438701469696
author Ulas, Efehan
author_facet Ulas, Efehan
author_sort Ulas, Efehan
collection PubMed
description In the last decade, NBA has grown into a billion-dollar industry where technology and advanced game plans play an essential role. Investors are interested in research examining the factors that can affect the team value. The aim of this research is to investigate the factors that affect the NBA team values. The value of a team can be influenced not only by performance-based variables, but also by macroeconomic indicators and demographic statistics. Data, analyzed in this study, contains of game statistics, economic variables and demographic statistics of the 30 teams in the NBA for the 2013–2020 seasons. Firstly, Pearson correlation test was implemented in order to identify the related variables. NBA teams’ characteristics and similarities were assessed with Machine Learning techniques (K-means and Hierarchical clustering). Secondly, Ordinary linear regression (OLS), fixed effect and random effect models were implemented in the statistical analyses. The models were compared based on Akaike Information Criterion (AIC). Fixed effect model with one lag was found the most effective model and our model produced consistently good results with the R(2) statistics of 0.974. In the final model, we found that the significant determinants of team value at the NBA team level are revenue, GDP, championship, population and key player. In contrast, the total number of turnovers has a negative impact on team value. These findings would be beneficial to coaches and managers to improve their strategies to increase their teams’ value.
format Online
Article
Text
id pubmed-8211228
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-82112282021-06-29 Examination of National Basketball Association (NBA) team values based on dynamic linear mixed models Ulas, Efehan PLoS One Research Article In the last decade, NBA has grown into a billion-dollar industry where technology and advanced game plans play an essential role. Investors are interested in research examining the factors that can affect the team value. The aim of this research is to investigate the factors that affect the NBA team values. The value of a team can be influenced not only by performance-based variables, but also by macroeconomic indicators and demographic statistics. Data, analyzed in this study, contains of game statistics, economic variables and demographic statistics of the 30 teams in the NBA for the 2013–2020 seasons. Firstly, Pearson correlation test was implemented in order to identify the related variables. NBA teams’ characteristics and similarities were assessed with Machine Learning techniques (K-means and Hierarchical clustering). Secondly, Ordinary linear regression (OLS), fixed effect and random effect models were implemented in the statistical analyses. The models were compared based on Akaike Information Criterion (AIC). Fixed effect model with one lag was found the most effective model and our model produced consistently good results with the R(2) statistics of 0.974. In the final model, we found that the significant determinants of team value at the NBA team level are revenue, GDP, championship, population and key player. In contrast, the total number of turnovers has a negative impact on team value. These findings would be beneficial to coaches and managers to improve their strategies to increase their teams’ value. Public Library of Science 2021-06-17 /pmc/articles/PMC8211228/ /pubmed/34138919 http://dx.doi.org/10.1371/journal.pone.0253179 Text en © 2021 Efehan Ulas https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Ulas, Efehan
Examination of National Basketball Association (NBA) team values based on dynamic linear mixed models
title Examination of National Basketball Association (NBA) team values based on dynamic linear mixed models
title_full Examination of National Basketball Association (NBA) team values based on dynamic linear mixed models
title_fullStr Examination of National Basketball Association (NBA) team values based on dynamic linear mixed models
title_full_unstemmed Examination of National Basketball Association (NBA) team values based on dynamic linear mixed models
title_short Examination of National Basketball Association (NBA) team values based on dynamic linear mixed models
title_sort examination of national basketball association (nba) team values based on dynamic linear mixed models
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8211228/
https://www.ncbi.nlm.nih.gov/pubmed/34138919
http://dx.doi.org/10.1371/journal.pone.0253179
work_keys_str_mv AT ulasefehan examinationofnationalbasketballassociationnbateamvaluesbasedondynamiclinearmixedmodels