Cargando…
Crop yield prediction integrating genotype and weather variables using deep learning
Accurate prediction of crop yield supported by scientific and domain-relevant insights, is useful to improve agricultural breeding, provide monitoring across diverse climatic conditions and thereby protect against climatic challenges to crop production. We used performance records from Uniform Soybe...
Autores principales: | Shook, Johnathon, Gangopadhyay, Tryambak, Wu, Linjiang, Ganapathysubramanian, Baskar, Sarkar, Soumik, Singh, Asheesh K. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8211294/ https://www.ncbi.nlm.nih.gov/pubmed/34138872 http://dx.doi.org/10.1371/journal.pone.0252402 |
Ejemplares similares
-
Deep Multiview Image Fusion for Soybean Yield Estimation in Breeding Applications
por: Riera, Luis G., et al.
Publicado: (2021) -
Deploying Fourier Coefficients to Unravel Soybean Canopy Diversity
por: Jubery, Talukder Z., et al.
Publicado: (2017) -
An explainable deep machine vision framework for plant stress phenotyping
por: Ghosal, Sambuddha, et al.
Publicado: (2018) -
Plant disease identification using explainable 3D deep learning on hyperspectral images
por: Nagasubramanian, Koushik, et al.
Publicado: (2019) -
A deep learning framework to discern and count microscopic nematode eggs
por: Akintayo, Adedotun, et al.
Publicado: (2018)