Cargando…
Enhanced balancing GAN: minority-class image generation
Generative adversarial networks (GANs) are one of the most powerful generative models, but always require a large and balanced dataset to train. Traditional GANs are not applicable to generate minority-class images in a highly imbalanced dataset. Balancing GAN (BAGAN) is proposed to mitigate this pr...
Autores principales: | Huang, Gaofeng, Jafari, Amir Hossein |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer London
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8211314/ https://www.ncbi.nlm.nih.gov/pubmed/34177125 http://dx.doi.org/10.1007/s00521-021-06163-8 |
Ejemplares similares
-
GammaGAN: Gamma-Scaled Class Embeddings for Conditional Video Generation
por: Kang, Minjae, et al.
Publicado: (2023) -
ADE-CycleGAN: A Detail Enhanced Image Dehazing CycleGAN Network
por: Yan, Bingnan, et al.
Publicado: (2023) -
BrainGAN: Brain MRI Image Generation and Classification Framework Using GAN Architectures and CNN Models
por: Alrashedy, Halima Hamid N., et al.
Publicado: (2022) -
GAN-based synthetic brain PET image generation
por: Islam, Jyoti, et al.
Publicado: (2020) -
Application of Generative Adversarial Networks (GANs) to jet images
por: Paganini, Michela
Publicado: (2017)