Cargando…
Unique Biomarker Characteristics in Gestational Diabetes Mellitus Identified by LC-MS-Based Metabolic Profiling
BACKGROUND: Gestational diabetes mellitus (GDM) is a type of glucose intolerance disorder that first occurs during women's pregnancy. The main diagnostic method for GDM is based on the midpregnancy oral glucose tolerance test. The rise of metabolomics has expanded the opportunity to better iden...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8211500/ https://www.ncbi.nlm.nih.gov/pubmed/34212051 http://dx.doi.org/10.1155/2021/6689414 |
_version_ | 1783709478758121472 |
---|---|
author | Meng, Xingjun Zhu, Bo Liu, Yan Fang, Lei Yin, Binbin Sun, Yanni Ma, Mengni Huang, Yuli Zhu, Yuning Zhang, Yunlong |
author_facet | Meng, Xingjun Zhu, Bo Liu, Yan Fang, Lei Yin, Binbin Sun, Yanni Ma, Mengni Huang, Yuli Zhu, Yuning Zhang, Yunlong |
author_sort | Meng, Xingjun |
collection | PubMed |
description | BACKGROUND: Gestational diabetes mellitus (GDM) is a type of glucose intolerance disorder that first occurs during women's pregnancy. The main diagnostic method for GDM is based on the midpregnancy oral glucose tolerance test. The rise of metabolomics has expanded the opportunity to better identify early diagnostic biomarkers and explore possible pathogenesis. METHODS: We collected blood serum from 34 GDM patients and 34 normal controls for a LC-MS-based metabolomics study. RESULTS: 184 metabolites were increased and 86 metabolites were decreased in the positive ion mode, and 65 metabolites were increased and 71 were decreased in the negative ion mode. Also, it was found that the unsaturated fatty acid metabolism was disordered in GDM. Ten metabolites with the most significant differences were selected for follow-up studies. Since the diagnostic specificity and sensitivity of a single differential metabolite are not definitive, we combined these metabolites to prepare a ROC curve. We found a set of metabolite combination with the highest sensitivity and specificity, which included eicosapentaenoic acid, docosahexaenoic acid, docosapentaenoic acid, arachidonic acid, citric acid, α-ketoglutaric acid, and genistein. The area under the curves (AUC) value of those metabolites was 0.984 between the GDM and control group. CONCLUSIONS: Our results provide a direction for the mechanism of GDM research and demonstrate the feasibility of developing a diagnostic test that can distinguish between GDM and normal controls clearly. Our findings were helpful to develop novel biomarkers for precision or personalized diagnosis for GDM. In addition, we provide a critical insight into the pathological and biological mechanisms for GDM. |
format | Online Article Text |
id | pubmed-8211500 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Hindawi |
record_format | MEDLINE/PubMed |
spelling | pubmed-82115002021-06-30 Unique Biomarker Characteristics in Gestational Diabetes Mellitus Identified by LC-MS-Based Metabolic Profiling Meng, Xingjun Zhu, Bo Liu, Yan Fang, Lei Yin, Binbin Sun, Yanni Ma, Mengni Huang, Yuli Zhu, Yuning Zhang, Yunlong J Diabetes Res Research Article BACKGROUND: Gestational diabetes mellitus (GDM) is a type of glucose intolerance disorder that first occurs during women's pregnancy. The main diagnostic method for GDM is based on the midpregnancy oral glucose tolerance test. The rise of metabolomics has expanded the opportunity to better identify early diagnostic biomarkers and explore possible pathogenesis. METHODS: We collected blood serum from 34 GDM patients and 34 normal controls for a LC-MS-based metabolomics study. RESULTS: 184 metabolites were increased and 86 metabolites were decreased in the positive ion mode, and 65 metabolites were increased and 71 were decreased in the negative ion mode. Also, it was found that the unsaturated fatty acid metabolism was disordered in GDM. Ten metabolites with the most significant differences were selected for follow-up studies. Since the diagnostic specificity and sensitivity of a single differential metabolite are not definitive, we combined these metabolites to prepare a ROC curve. We found a set of metabolite combination with the highest sensitivity and specificity, which included eicosapentaenoic acid, docosahexaenoic acid, docosapentaenoic acid, arachidonic acid, citric acid, α-ketoglutaric acid, and genistein. The area under the curves (AUC) value of those metabolites was 0.984 between the GDM and control group. CONCLUSIONS: Our results provide a direction for the mechanism of GDM research and demonstrate the feasibility of developing a diagnostic test that can distinguish between GDM and normal controls clearly. Our findings were helpful to develop novel biomarkers for precision or personalized diagnosis for GDM. In addition, we provide a critical insight into the pathological and biological mechanisms for GDM. Hindawi 2021-06-09 /pmc/articles/PMC8211500/ /pubmed/34212051 http://dx.doi.org/10.1155/2021/6689414 Text en Copyright © 2021 Xingjun Meng et al. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Meng, Xingjun Zhu, Bo Liu, Yan Fang, Lei Yin, Binbin Sun, Yanni Ma, Mengni Huang, Yuli Zhu, Yuning Zhang, Yunlong Unique Biomarker Characteristics in Gestational Diabetes Mellitus Identified by LC-MS-Based Metabolic Profiling |
title | Unique Biomarker Characteristics in Gestational Diabetes Mellitus Identified by LC-MS-Based Metabolic Profiling |
title_full | Unique Biomarker Characteristics in Gestational Diabetes Mellitus Identified by LC-MS-Based Metabolic Profiling |
title_fullStr | Unique Biomarker Characteristics in Gestational Diabetes Mellitus Identified by LC-MS-Based Metabolic Profiling |
title_full_unstemmed | Unique Biomarker Characteristics in Gestational Diabetes Mellitus Identified by LC-MS-Based Metabolic Profiling |
title_short | Unique Biomarker Characteristics in Gestational Diabetes Mellitus Identified by LC-MS-Based Metabolic Profiling |
title_sort | unique biomarker characteristics in gestational diabetes mellitus identified by lc-ms-based metabolic profiling |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8211500/ https://www.ncbi.nlm.nih.gov/pubmed/34212051 http://dx.doi.org/10.1155/2021/6689414 |
work_keys_str_mv | AT mengxingjun uniquebiomarkercharacteristicsingestationaldiabetesmellitusidentifiedbylcmsbasedmetabolicprofiling AT zhubo uniquebiomarkercharacteristicsingestationaldiabetesmellitusidentifiedbylcmsbasedmetabolicprofiling AT liuyan uniquebiomarkercharacteristicsingestationaldiabetesmellitusidentifiedbylcmsbasedmetabolicprofiling AT fanglei uniquebiomarkercharacteristicsingestationaldiabetesmellitusidentifiedbylcmsbasedmetabolicprofiling AT yinbinbin uniquebiomarkercharacteristicsingestationaldiabetesmellitusidentifiedbylcmsbasedmetabolicprofiling AT sunyanni uniquebiomarkercharacteristicsingestationaldiabetesmellitusidentifiedbylcmsbasedmetabolicprofiling AT mamengni uniquebiomarkercharacteristicsingestationaldiabetesmellitusidentifiedbylcmsbasedmetabolicprofiling AT huangyuli uniquebiomarkercharacteristicsingestationaldiabetesmellitusidentifiedbylcmsbasedmetabolicprofiling AT zhuyuning uniquebiomarkercharacteristicsingestationaldiabetesmellitusidentifiedbylcmsbasedmetabolicprofiling AT zhangyunlong uniquebiomarkercharacteristicsingestationaldiabetesmellitusidentifiedbylcmsbasedmetabolicprofiling |