Cargando…
A new deep learning algorithm of 12-lead electrocardiogram for identifying atrial fibrillation during sinus rhythm
Atrial fibrillation (AF) is the most prevalent arrhythmia and is associated with increased morbidity and mortality. Its early detection is challenging because of the low detection yield of conventional methods. We aimed to develop a deep learning-based algorithm to identify AF during normal sinus rh...
Autores principales: | Baek, Yong-Soo, Lee, Sang-Chul, Choi, Wonik, Kim, Dae-Hyeok |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8211689/ https://www.ncbi.nlm.nih.gov/pubmed/34140578 http://dx.doi.org/10.1038/s41598-021-92172-5 |
Ejemplares similares
-
Artificial intelligence-enhanced 12-lead electrocardiography for identifying atrial fibrillation during sinus rhythm (AIAFib) trial: protocol for a multicenter retrospective study
por: Baek, Yong-Soo, et al.
Publicado: (2023) -
Artificial intelligence-estimated biological heart age using a 12-lead electrocardiogram predicts mortality and cardiovascular outcomes
por: Baek, Yong-Soo, et al.
Publicado: (2023) -
An artificial intelligence–based model for prediction of atrial fibrillation from single-lead sinus rhythm electrocardiograms facilitating screening
por: Hygrell, Tove, et al.
Publicado: (2023) -
Dual atrial rhythm on electrocardiogram
por: Bohora, Shomu
Publicado: (2015) -
A deep neural network for 12-lead electrocardiogram interpretation outperforms a conventional algorithm, and its physician overread, in the diagnosis of atrial fibrillation
por: Smith, Stephen W., et al.
Publicado: (2019)