Cargando…
Electro-oxidation of formoterol fumarate on the surface of novel poly(thiazole yellow-G) layered multi-walled carbon nanotube paste electrode
The current study explicates the electro-oxidation behavior of formoterol fumarate (FLFT) in the presence of uric acid (UA) on the surface of poly thiazole yellow-G (TY-G) layered multi-walled carbon nanotube paste electrode (MWCNTPE). The modified (Poly(TY-G)LMWCNTPE) and unmodified (MWCNTPE) elect...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8211837/ https://www.ncbi.nlm.nih.gov/pubmed/34140565 http://dx.doi.org/10.1038/s41598-021-92099-x |
Sumario: | The current study explicates the electro-oxidation behavior of formoterol fumarate (FLFT) in the presence of uric acid (UA) on the surface of poly thiazole yellow-G (TY-G) layered multi-walled carbon nanotube paste electrode (MWCNTPE). The modified (Poly(TY-G)LMWCNTPE) and unmodified (MWCNTPE) electrode materials were characterized through electrochemical impedance spectroscopy (EIS), field emission scanning electron microscopy (FE-SEM), and cyclic voltammetry (CV) approaches. The characterization data confirms the good conducting and electrocatalytic nature with more electrochemical active sites on the Poly(TY-G)LMWCNTPE than MWCNTPE towards the FLFT analysis in the presence of UA. Poly(TY-G)LMWCNTPE easily separates the two drugs (FLFT and UA) even though they both have nearer oxidation peak potential. The electro-catalytic activity of the developed electrode is fast and clear for FLFT electro-oxidation in 0.2 M phosphate buffer (PB) of pH 6.5. The Poly(TY-G)LMWCNTPE offered a well-resolved peak with the highest electro-oxidation peak current at the peak potential of 0.538 V than MWCNTPE. The potential scan rate and oxidation peak growth time studies show the electrode reaction towards FLFT electro-oxidation is continued through a diffusion-controlled step. The variation of concentration of FLFT in the range from 0.2 to 1.5 µM (absence of UA) and 3.0 to 8.0 μM (presence of UA) provides a good linear relationship with increased peak current and a lower limit of detection (LOD) values of 0.0128 µM and 0.0129 µM, respectively. The prepared electrode gives a fine recovery for the detection of FLFT in the medicinal sample with acceptable repeatability, stability, and reproducibility. |
---|