Cargando…
Modeling in systems biology: Causal understanding before prediction?
Babur et al. (2021) developed the CausalPath tool to infer causal signaling interactions in high-throughput proteomics data that may foster mechanical understanding from large-scale biological datasets.
Autores principales: | Barsi, Szilvia, Szalai, Bence |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8212131/ https://www.ncbi.nlm.nih.gov/pubmed/34179849 http://dx.doi.org/10.1016/j.patter.2021.100280 |
Ejemplares similares
-
Toward a deeper understanding of gene-by-sex interaction models
por: Khramtsova, Ekaterina A., et al.
Publicado: (2023) -
Predicting drug toxicity at the intersection of informatics and biology: DTox builds a foundation
por: Sniatynski, Matthew J., et al.
Publicado: (2022) -
Deconvoluting prediabetes: A path to understanding the origins of complications
por: Wagner, Robert
Publicado: (2023) -
Preview of "Interpretable systems biomarkers predict response to immune-checkpoint inhibitors"
por: Guinney, Justin
Publicado: (2021) -
Leveraging our common African origins to understand human evolution and health
por: Wonkam, Ambroise, et al.
Publicado: (2023)