Cargando…

ACSNI: An unsupervised machine-learning tool for prediction of tissue-specific pathway components using gene expression profiles

Determining the tissue- and disease-specific circuit of biological pathways remains a fundamental goal of molecular biology. Many components of these biological pathways still remain unknown, hindering the full and accurate characterization of biological processes of interest. Here we describe ACSNI...

Descripción completa

Detalles Bibliográficos
Autores principales: Anene, Chinedu Anthony, Khan, Faraz, Bewicke-Copley, Findlay, Maniati, Eleni, Wang, Jun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8212143/
https://www.ncbi.nlm.nih.gov/pubmed/34179848
http://dx.doi.org/10.1016/j.patter.2021.100270
_version_ 1783709612874137600
author Anene, Chinedu Anthony
Khan, Faraz
Bewicke-Copley, Findlay
Maniati, Eleni
Wang, Jun
author_facet Anene, Chinedu Anthony
Khan, Faraz
Bewicke-Copley, Findlay
Maniati, Eleni
Wang, Jun
author_sort Anene, Chinedu Anthony
collection PubMed
description Determining the tissue- and disease-specific circuit of biological pathways remains a fundamental goal of molecular biology. Many components of these biological pathways still remain unknown, hindering the full and accurate characterization of biological processes of interest. Here we describe ACSNI, an algorithm that combines prior knowledge of biological processes with a deep neural network to effectively decompose gene expression profiles (GEPs) into multi-variable pathway activities and identify unknown pathway components. Experiments on public GEP data show that ACSNI predicts cogent components of mTOR, ATF2, and HOTAIRM1 signaling that recapitulate regulatory information from genetic perturbation and transcription factor binding datasets. Our framework provides a fast and easy-to-use method to identify components of signaling pathways as a tool for molecular mechanism discovery and to prioritize genes for designing future targeted experiments (https://github.com/caanene1/ACSNI).
format Online
Article
Text
id pubmed-8212143
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-82121432021-06-25 ACSNI: An unsupervised machine-learning tool for prediction of tissue-specific pathway components using gene expression profiles Anene, Chinedu Anthony Khan, Faraz Bewicke-Copley, Findlay Maniati, Eleni Wang, Jun Patterns (N Y) Descriptor Determining the tissue- and disease-specific circuit of biological pathways remains a fundamental goal of molecular biology. Many components of these biological pathways still remain unknown, hindering the full and accurate characterization of biological processes of interest. Here we describe ACSNI, an algorithm that combines prior knowledge of biological processes with a deep neural network to effectively decompose gene expression profiles (GEPs) into multi-variable pathway activities and identify unknown pathway components. Experiments on public GEP data show that ACSNI predicts cogent components of mTOR, ATF2, and HOTAIRM1 signaling that recapitulate regulatory information from genetic perturbation and transcription factor binding datasets. Our framework provides a fast and easy-to-use method to identify components of signaling pathways as a tool for molecular mechanism discovery and to prioritize genes for designing future targeted experiments (https://github.com/caanene1/ACSNI). Elsevier 2021-06-11 /pmc/articles/PMC8212143/ /pubmed/34179848 http://dx.doi.org/10.1016/j.patter.2021.100270 Text en © 2021 The Authors https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Descriptor
Anene, Chinedu Anthony
Khan, Faraz
Bewicke-Copley, Findlay
Maniati, Eleni
Wang, Jun
ACSNI: An unsupervised machine-learning tool for prediction of tissue-specific pathway components using gene expression profiles
title ACSNI: An unsupervised machine-learning tool for prediction of tissue-specific pathway components using gene expression profiles
title_full ACSNI: An unsupervised machine-learning tool for prediction of tissue-specific pathway components using gene expression profiles
title_fullStr ACSNI: An unsupervised machine-learning tool for prediction of tissue-specific pathway components using gene expression profiles
title_full_unstemmed ACSNI: An unsupervised machine-learning tool for prediction of tissue-specific pathway components using gene expression profiles
title_short ACSNI: An unsupervised machine-learning tool for prediction of tissue-specific pathway components using gene expression profiles
title_sort acsni: an unsupervised machine-learning tool for prediction of tissue-specific pathway components using gene expression profiles
topic Descriptor
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8212143/
https://www.ncbi.nlm.nih.gov/pubmed/34179848
http://dx.doi.org/10.1016/j.patter.2021.100270
work_keys_str_mv AT anenechineduanthony acsnianunsupervisedmachinelearningtoolforpredictionoftissuespecificpathwaycomponentsusinggeneexpressionprofiles
AT khanfaraz acsnianunsupervisedmachinelearningtoolforpredictionoftissuespecificpathwaycomponentsusinggeneexpressionprofiles
AT bewickecopleyfindlay acsnianunsupervisedmachinelearningtoolforpredictionoftissuespecificpathwaycomponentsusinggeneexpressionprofiles
AT maniatieleni acsnianunsupervisedmachinelearningtoolforpredictionoftissuespecificpathwaycomponentsusinggeneexpressionprofiles
AT wangjun acsnianunsupervisedmachinelearningtoolforpredictionoftissuespecificpathwaycomponentsusinggeneexpressionprofiles